Skip to main content

Affinity-Based Microfluidics Combined with Atomic Force Microscopy for Isolation and Nanomechanical Characterization of Circulating Tumor Cells

  • Protocol
  • First Online:
Microfluidic Systems for Cancer Diagnosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2679))

Abstract

In this chapter, we present the materials and methods required to isolate and characterize circulating tumor cells (CTCs) from blood samples of cancer patients based on our newly developed microfluidic technologies. In particular, the devices presented herein are designed to be compatible with at\omic force microscopy (AFM) for post-capture nanomechanical investigation of CTCs. Microfluidics is well-established as a technology for isolating CTCs from the whole blood of cancer patients, and AFM is a gold standard for quantitative biophysical analysis of cells. However, CTCs are very scarce in nature, and those captured using standard closed-channel microfluidic chips are typically inaccessible for AFM procedures. As a result, their nanomechanical properties largely remain unexplored. Thus, given limitations associated with current microfluidic designs, significant efforts are put toward bringing innovative designs for real time characterization of CTCs. In light of this constant endeavor, the scope of this chapter is to compile our recent efforts on two microfluidic technologies, namely, the AFM-Chip and the HB-MFP, which proved to be efficient in isolating CTCs through antibody-antigen interactions, and their subsequent characterization using AFM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331:1559–1564

    Article  CAS  PubMed  Google Scholar 

  2. Micalizzi DS, Maheswaran S, Haber DA (2017) A conduit to metastasis: circulating tumor cell biology. Genes Dev 31:1827–1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ward KA, Li WI, Zimmer S et al (1991) Viscoelastic properties of transformed cells: role in tumor cell progression and metastasis formation. Biorheology 28:301–313

    Article  CAS  PubMed  Google Scholar 

  4. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mat 55:3989–4014

    Article  CAS  Google Scholar 

  5. Cross SE, Jin YS, Rao J et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  CAS  PubMed  Google Scholar 

  6. Ruoslahti E (1996) How cancer spreads. Sci Am 275:72–77

    Article  CAS  PubMed  Google Scholar 

  7. Sun YX, Haglund TA, Rogers AJ et al (2018) Review: microfluidics technologies for blood-based cancer liquid biopsies. Anal Chim Acta 1012:10–29

    Article  CAS  PubMed  Google Scholar 

  8. Farahinia A, Zhang WJ, Badea I (2021) Novel microfluidic approaches to circulating tumor cell separation and sorting of blood cells: a review. J Sci Adv Mater Dev 6:303–320

    CAS  Google Scholar 

  9. Banko P, Lee SY, Nagygyorgy V et al (2019) Technologies for circulating tumor cell separation from whole blood. J Hematol Oncol 12:48

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stott SL, Hsu CH, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. P Natl Acad Sci USA 107:18392–18397

    Article  CAS  Google Scholar 

  11. Barriere G, Fici P, Gallerani G et al (2014) Circulating tumor cells and epithelial, mesenchymal and stemness markers: characterization of cell subpopulations. Ann Transl Med 2:109

    PubMed  PubMed Central  Google Scholar 

  12. Deliorman M, Janahi FK, Sukumar P et al (2020) AFM-compatible microfluidic platform for affinity-based capture and nanomechanical characterization of circulating tumor cells. Microsyst Nanoeng 6:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park MH, Reategui E, Li W et al (2017) Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J Am Chem Soc 139:2741–2749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glia A, Deliorman M, Sukumar P et al (2021) Herringbone microfluidic probe for multiplexed affinity-capture of prostate circulating tumor cells. Adv Mater Technol 6:2100053

    Article  CAS  Google Scholar 

  15. Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33:15–22

    Article  CAS  PubMed  Google Scholar 

  16. Pedrol E, Garcia-Algar M, Massons J et al (2017) Optofluidic device for the quantification of circulating tumor cells in breast cancer. Sci Rep 7:3677

    Article  PubMed  PubMed Central  Google Scholar 

  17. Thoumine O, Ott A, Cardoso O et al (1999) Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J Biochem Bioph Meth 39:47–62

    Article  CAS  Google Scholar 

  18. Miura K, Yamamoto S (2015) A scanning acoustic microscope discriminates cancer cells in fluid. Sci Rep 5:15243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iyer S, Gaikwad RM, Subba-Rao V et al (2009) Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat Nanotechnol 4:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Osmulski P, Mahalingam D, Gaczynska ME et al (2014) Nanomechanical biomarkers of single circulating tumor cells for detection of castration resistant prostate cancer. Prostate 74:1297–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Glia A, Deliorman M, Qasaimeh MA In Atomic force microscopy for single cell analysis and mechanophenotyping of circulating tumor cells, 2020 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), 1–7

    Google Scholar 

  22. Deliorman M, Glia A, Qasaimeh MA (2022) Characterizing circulating tumor cells using affinity-based microfluidic capture and AFM-based biomechanics. STAR Protoc 3:101433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brimmo A, Goyette PA, Alnemari R et al (2018) 3D printed microfluidic probes. Sci Rep 8:10995

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brimmo AT, Menachery A, Qasaimeh MA (2019) Microelectrofluidic probe for sequential cell separation and patterning. Lab Chip 19:4052–4063

    Article  CAS  PubMed  Google Scholar 

  25. Brimmo AT, Menachery A, Sukumar P et al (2021) Noncontact multiphysics probe for spatiotemporal resolved single-cell manipulation and analyses. Small 17:e2100801

    Article  PubMed  Google Scholar 

  26. Wolfe DB, Qin D, Whitesides GM (2010) Rapid prototyping of microstructures by soft lithography for biotechnology. Methods Mol Biol 583:81–107

    Article  CAS  PubMed  Google Scholar 

  27. Qasaimeh MA, Suman B, Menachery A et al (2017) Isolation of circulating plasma cells in multiple myeloma using CD138 antibody-based capture in a microfluidic device. Sci Rep 7:45681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was financially supported by NYU Abu Dhabi; the 2021 NYU Abu Dhabi Research Enhancement Fund, UAE; and the Terry Fox Foundation’s International Run Program, Vancouver, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Qasaimeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Deliorman, M., Glia, A., Qasaimeh, M.A. (2023). Affinity-Based Microfluidics Combined with Atomic Force Microscopy for Isolation and Nanomechanical Characterization of Circulating Tumor Cells. In: Garcia-Cordero, J.L., Revzin, A. (eds) Microfluidic Systems for Cancer Diagnosis . Methods in Molecular Biology, vol 2679. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3271-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3271-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3270-3

  • Online ISBN: 978-1-0716-3271-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics