Skip to main content
Log in

Unloading of cryoprotectants from cryoprotectant-loaded cells on a microfluidic platform

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, a multistep dilution-filtration microdevice (MDFD) is developed for unloading cryoprotectants from cryoprotectant-loaded cells. The MDFD contained a diluent producing region, a dilution-filtration execution region, and a filtrate collection region. It was made of two patterned PMMA stamps with four pieces of sandwiched PVDF membranes. Firstly, the performances of the mixers that were used in the diluent producing region and the dilution-filtration execution region were assessed using fluorescence experiments. Then, the effect of the MDFD structure on the loss of cells was investigated by applying the MDFD to unload glycerin from glycerin-loaded porcine red blood cells. Finally, the effects of the cell density, glycerin concentration, and membrane pore size on the clearance efficiency of glycerin (C G ), the survival rate of cells (S C ) and the recovery rate of cells (R C ) have been studied. Under the designed conditions, C G achieved ~80% and S C reached ~90%. However, R C was only ~40%, mainly resulting from the cells detained on the membrane surface and squeezed through the membrane pores into the filtrate. Increasing the membrane pore size caused high C G and S C , but low R C . For a low glycerin concentration, C G , S C , and R C were all high. For a high cell density, C G was high, but both S C and R C were low. This work is of significance to develop a microfluidic chip for unloading cryoprotectants from a small amount of cryopreserved cell samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • K.A. Almansoori, V. Prasad, J.F. Forbes, G.K. Law, L.E. McGann, J.A.W. Elliott, N.M. Jomha, Cryobiology 64, 185 (2012)

    Article  Google Scholar 

  • K. Aran, A. Fok, L.A. Sasso, N. Kamdar, Y.L. Guan, Q. Sun, A. Undar, J.D. Zahn, Lab Chip 11, 2858 (2011)

    Article  Google Scholar 

  • T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, K. Babcock, S.R. Manalis, Nature 446, 1066 (2007)

    Article  Google Scholar 

  • W. Ding, J. Yu, E. Woods, S. Heimfeld, D. Gao, J. Membr. Sci. 288, 85 (2007)

    Article  Google Scholar 

  • R. Dou, R.E. Saunders, L. Mohamet, C.M. Ward, B. Derby, Lab Chip 15, 3503 (2015)

    Article  Google Scholar 

  • S. Ferrari, A. Paffoni, F. Filippi, A. Busnelli, W. Vegetti, E. Somigliana, Reprod. BioMed. Online 33, 29 (2016)

    Article  Google Scholar 

  • E. Fitzpatrick, S. Xu, J. Datta, J. Cintolo, B. Czerniecki, Cytotherapy 17, S22 (2015)

    Article  Google Scholar 

  • K.K. Fleming Glass, E.K. Longmire, A. Hubel, Int. J. Heat Mass Tran 51, 5749 (2008)

    Article  Google Scholar 

  • L. Gong, W. Ding, Y. Ma, S. Sun, G. Zhao, D. Gao, Biopreserv. Biobank. 11, 299 (2013)

    Article  Google Scholar 

  • V. Han, K. Serrano, D. Devine, Vox sanguinis 98, 116 (2010)

    Article  Google Scholar 

  • J. Hanna, A. Hubel, E. Lemke, Biotechnol. Bioeng. 109, 2316 (2012)

    Article  Google Scholar 

  • Y.S. Heo, H.J. Lee, B.A. Hassell, D. Irimia, T.L. Toth, H. Elmoazzen, M. Toner, Lab Chip 11, 3530 (2011)

    Article  Google Scholar 

  • R. Hoyt, J. Szer, A. Grigg, Bone Marrow Transpl 25, 1285 (2000)

    Article  Google Scholar 

  • A. Hubel, Transfusion 51(Suppl 4), 82S (2011)

    Article  Google Scholar 

  • S. Jadoon, M. Adeel, J Ayub Med Coll Abbottabad 27, 22 (2015)

    Google Scholar 

  • M. Kersaudy-Kerhoas, D.M. Kavanagh, R.S. Dhariwal, C.J. Campbell, M.P. Desmulliez, Lab Chip 10, 1587 (2010)

    Article  Google Scholar 

  • C. Kim, K. Lee, J.H. Kim, K.S. Shin, K.J. Lee, T.S. Kim, J.Y. Kang, Lab Chip 8, 473 (2008)

    Article  Google Scholar 

  • E.K. Longmire, J. Biomech. Eng-T. Asme 129, 703 (2006)

    Article  Google Scholar 

  • R.E. Lusianti, A.Z. Higgins, Biomicrofluidics 8, 054124 (2014)

    Article  Google Scholar 

  • R.E. Lusianti, J.D. Benson, J.P. Acker, A.Z. Higgins, Biotechnol. Prog. 29, 609 (2013)

    Article  Google Scholar 

  • J. Marchalot, Y. Fouillet, J.L. Achard, Microfluid. Nanofluid. 17, 167 (2014)

    Article  Google Scholar 

  • C. Mata, E.K. Longmire, D.H. McKenna, K.K. Glass, A. Hubel, Microfluid. Nanofluid. 5, 529 (2008)

    Article  Google Scholar 

  • C. Mata, E. Longmire, D. McKenna, K. Glass, A. Hubel, Microfluid. Nanofluid. 8, 457 (2009)

    Article  Google Scholar 

  • H.T. Meryman, Transfusion 47, 935 (2007)

    Article  Google Scholar 

  • S. Park, P.A. Wijethunga, H. Moon, B. Han, Lab Chip 11, 2212 (2011)

    Article  Google Scholar 

  • D.G. Pyne, J. Liu, M. Abdelgawad, Y. Sun, PLoS One 9, e108128 (2014)

    Article  Google Scholar 

  • H. Qiao, W. Ding, S. Sun, L. Gong, D. Gao, Biomed. Eng. Online 13, 120 (2014)

    Article  Google Scholar 

  • V. Ragsdale, H. Li, H. Sant, T. Ameel, B.K. Gale, Biomed. Microdevices 18, 1 (2016)

    Article  Google Scholar 

  • T. Scherr, S. Pursley, W.T. Monroe, K. Nandakumar, Biomicrofluidics 7, 024104 (2013)

    Article  Google Scholar 

  • T. Scherr, S. Pursley, W. Todd Monroe, K. Nandakumar, Int. J. Heat Mass Tran 78, 1284 (2014)

    Article  Google Scholar 

  • E. Sollier, M. Cubizolles, Y. Fouillet, J.L. Achard, Biomed. Microdevices 12, 485 (2010)

    Article  Google Scholar 

  • Y.S. Song, S. Moon, L. Hulli, S.K. Hasan, E. Kayaalp, U. Demirci, Lab Chip 9, 1874 (2009)

    Article  Google Scholar 

  • R. Syme, M. Bewick, D. Stewart, K. Porter, T. Chadderton, S. Glück, Biol. Blood. Marrow. Tr 10, 135 (2004)

    Article  Google Scholar 

  • S. Thorslund, O. Klett, F. Nikolajeff, K. Markides, J. Bergquist, Biomed. Microdevices 8, 73 (2006)

    Article  Google Scholar 

  • S. Tripathi, A. Prabhakar, N. Kumar, S.G. Singh, A. Agrawal, Biomed. Microdevices 15, 415 (2013)

    Article  Google Scholar 

  • T.-R. Wang, J. Yan, C.-L. Lu, X. Xia, T.-L. Yin, X. Zhi, X.-H. Zhu, T. Ding, W.-H. Hu, H.-Y. Guo, Hum. Reprod. 31, 763 (2016)

    Article  Google Scholar 

  • K.W. Yong, W.K.Z. Wan Safwani, F. Xu, W.A.B. Wan Abas, J.R. Choi, B. Pingguan-Murphy, Biopreserv. Biobank 13, 231 (2015)

    Article  Google Scholar 

  • W. Zhang, G. Yang, A. Zhang, L.X. Xu, X. He, Biomed. Microdevices 12, 89 (2010)

    Article  Google Scholar 

  • X. Zhou, Z. Liu, Z. Shu, W. Ding, P. Du, J. Chung, C. Liu, S. Heimfeld, D. Gao, J Biomech Eng 133, 021007 (2011)

    Article  Google Scholar 

  • L. Zou, W. Ding, S. Sun, F. Tang, D. Gao, Cryobiology 71, 210 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Grant Nos.: 81571768, 81627806), the Fundamental Research Funds for the Central Universities (Grant Nos.: WK6030000054, WK3490000001), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.: 20133402120033). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Ding.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 367 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Zou, L., Qiu, B. et al. Unloading of cryoprotectants from cryoprotectant-loaded cells on a microfluidic platform. Biomed Microdevices 19, 15 (2017). https://doi.org/10.1007/s10544-017-0155-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0155-6

Keywords

Navigation