Skip to main content
Log in

Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Capillary-driven microfluidics is essential for development of point-of-care diagnostic micro-devices. Polymerase chain reaction (PCR)-based micro-devices are widely developed and used in such point-of-care settings. It is imperative to characterize the fluid parameters of PCR solution for designing efficient capillary-driven microfluidic networks. Generally, for numeric modelling, the fluid parameters of PCR solution are approximated to that of water. This procedure leads to inaccurate results, which are discrepant to experimental data. This paper describes mathematical modeling and experimental validation of capillary-driven flow inside Poly-(dimethyl) siloxane (PDMS)-glass hybrid micro-channels. Using experimentally measured PCR fluid parameters, the capillary meniscus displacement in PDMS-glass microfluidic ladder network is simulated using computational fluid dynamic (CFD), and experimentally verified to match with the simulated data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • A. K. Au, H. Lai, B. R. Utela, A. Folch, Microvalves and micropumps for BioMEMS. Micromachines 2, 179–220 (2011). doi:10.3390/mi2020179

    Article  Google Scholar 

  • B. Bachmann, W. Luke, G. Hunsmann, Improvement of PCR amplified DNA sequencing with the aid of detergents. Nucleic Acids Res. 18, 1309 (1990)

    Article  Google Scholar 

  • H. Bruus, Theoretical microfluidics. (OUP, Oxford, 2008), p. 51

  • W. K. Chan, C. Yang, Surface-tension-driven liquid–liquid displacement in a capillary. J. Micromech. Microeng. 15, 1722 (2005)

    Article  Google Scholar 

  • P.-C. Chen, W. Fan, T.-K. Hoo, L. C. Z. Chan, Z. Wang, Simulation guided-design of a microfluidic thermal reactor for polymerase chain reaction. Chem. Eng. Res. Des. 90, 591–599 (2012). doi:10.1016/j.cherd.2011.09.00

    Article  Google Scholar 

  • E. Delamarche, A. Bernard, H. Schmid, B. Michel, H. Biebuyck, Patterned delivery of immunoglobulins to surfaces using microfluidic networks, vol 276 (Science, 1997), pp. 779–781

  • L. Gervais, E. Delamarche, Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9, 3330–3337 (2009). doi:10.1039/b906523g

    Article  Google Scholar 

  • L. Gui, C. L. Ren, Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip. Anal. Chem. 78, 6215–6222 (2006). doi:10.1021/ac060553d

    Article  Google Scholar 

  • K. Hosokawa, M. Omata, K. Sato, M. Maeda, Power-free sequential injection for microchip immunoassay toward point-of-care testing. Lab Chip 6, 236–241 (2006). doi:10.1039/b513424b

    Article  Google Scholar 

  • J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T. J. Lu, F. Xu, Advances in paper-based point-of-care diagnostics. Biosens. Bioelectron. 54, 585–597 (2014). doi:10.1016/j.bios.2013.10.075

    Article  Google Scholar 

  • H. E. Jeong, P. Kim, M. K. Kwak, C. H. Seo, K. Y. Suh, Capillary kinetics of water in homogeneous, hydrophilic polymeric micro- to nanochannels. Small 3, 778–782 (2007). doi:10.1002/smll.200600666

    Article  Google Scholar 

  • D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. de Rooij, E. Delamarche, Autonomous microfluidic capillary system. Anal. Chem. 74, 6139–6144 (2002)

    Article  Google Scholar 

  • A. Karagunduz, K. D. Pennell, M. H. Young, Influence of a nonionic surfactant on the water retention properties of unsaturated soils. Soil Sci. Soc. Am. J. 65, 1392–1399 (2001). doi:10.2136/sssaj2001.6551392x

    Article  Google Scholar 

  • E. Kim, Y. Xia, G. M. Whitesides, Polymer microstructures formed by moulding in capillaries. Nature 376, 581–584 (1995)

    Article  Google Scholar 

  • Y. C. Kim, S.-H. Kim, D. Kim, S.-J. Park, J.-K. Park, Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane). Sensors Actuators B Chem. 145, 861–868 (2010). doi:10.1016/j.snb.2010.01.017

    Article  Google Scholar 

  • Y. Lung-Jieh, Y. Tze-Jung, T. Yu-Chong, The marching velocity of the capillary meniscus in a microchannel. J. Micromech. Microeng. 14, 220 (2004)

    Article  Google Scholar 

  • N. Ramalingam, H.-B. Liu, C.-C. Dai, Y. Jiang, H. Wang, Q. Wang, K. M. Hui, H.-Q. Gong, Real-time PCR array chip with capillary-driven sample loading and reactor sealing for point-of-care applications. Biomed. Microdevices 11, 1007–1020 (2009)

    Article  Google Scholar 

  • N. Ramalingam, Z. Rui, H.-B. Liu, C.-C. Dai, R. Kaushik, B. Ratnaharika, H.-Q. Gong, Real-time PCR-based microfluidic array chip for simultaneous detection of multiple waterborne pathogens. Sensors Actuators B Chem. 145, 543–552 (2010). doi:10.1016/j.snb.2009.11.025

    Article  Google Scholar 

  • G. C. Randall, P. S. Doyle, Permeation-driven flow in poly(dimethylsiloxane) microfluidic devices. Proc. Natl. Acad. Sci. U. S. A. 102, 10813–10818 (2005). doi:10.1073/pnas.0503287102

    Article  Google Scholar 

  • R. Safavieh, D. Juncker, Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements. Lab Chip 13, 4180–4189 (2013). doi:10.1039/c3lc50691f

    Article  Google Scholar 

  • R. Safavieh, A. Tamayol, D. Juncker, Serpentine and leading-edge capillary pumps for microfluidic capillary systems. Microfluid. Nanofluid., 1–10 (2014). doi:10.1007/s10404-014-1454-3

  • T. M. Schutzius, M. Elsharkawy, M. K. Tiwari, C. M. Megaridis, Surface tension confined (STC) tracks for capillary-driven transport of low surface tension liquids. Lab Chip 12, 5237–5242 (2012). doi:10.1039/c2lc40849j

    Article  Google Scholar 

  • J. Seo, L. P. Lee, Effects on wettability by surfactant accumulation/depletion in bulk polydimethylsiloxane (PDMS). Sensors Actuators B Chem. 119, 192–198 (2006)

    Article  Google Scholar 

  • J. Siegrist, M. Amasia, N. Singh, D. Banerjee, M. Madou, Numerical modeling and experimental validation of uniform microchamber filling in centrifugal microfluidics. Lab Chip 10, 876–886 (2010). doi:10.1039/b917880e

    Article  Google Scholar 

  • H. Tachibana, M. Saito, K. Tsuji, K. Yamanaka, L. Q. Hoa, E. Tamiya, Self-propelled continuous-flow PCR in capillary-driven microfluidic device: microfluidic behavior and DNA amplification. Sensors Actuators B Chem. 206, 303–310 (2015). doi:10.1016/j.snb.2014.09.004

    Article  Google Scholar 

  • L. H. Thamdrup, F. Persson, H. Bruus, A. Kristensen, H. Flyvbjerg, Experimental investigation of bubble formation during capillary filling of SiO[sub 2] nanoslits. Appl. Phys. Lett. 91, 163505–163503 (2007)

    Article  Google Scholar 

  • P. Waghmare, S. Mitra, A comprehensive theoretical model of capillary transport in rectangular microchannels. Microfluid. Nanofluid. 12, 53–63 (2012). doi:10.1007/s10404-011-0848-8

    Article  Google Scholar 

  • G. M. Walker, D. J. Beebe, A passive pumping method for microfluidic devices. Lab Chip 2, 131–134 (2002). doi:10.1039/b204381e

    Article  Google Scholar 

  • S. Wang, W. Wang, Kinetic characteristics of continuous flow polymerase chain reaction chip: A numerical investigation. SCIENCE CHINA Technol. Sci. 53, 1967–1972 (2010). doi:10.1007/s11431-010-3096-3

    Article  MATH  Google Scholar 

  • R. S. Weyant, P. Edmonds, B. Swaminathan, Effect of ionic and nonionic detergents on the Taq polymerase. Biotechniques 9, 308–309 (1990)

    Google Scholar 

  • K. S. Yun, E. Yoon, Micro/Nanofluidic device for single-cell-based assay. Biomed. Microdevices 7, 35–40 (2005)

    Article  Google Scholar 

  • C. Zhang, D. Xing, Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res. 35, 4223–4237 (2007). doi:10.1093/nar/gkm389

    Article  Google Scholar 

  • M. Zimmermann, H. Schmid, P. Hunziker, E. Delamarche, Capillary pumps for autonomous capillary systems. Lab Chip 7, 119–125 (2007). doi:10.1039/b609813d

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naveen Ramalingam or Thomas Gong Hai-Qing.

Additional information

This research was performed while Naveen Ramalingam and Liu Hao-Bing were at School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramalingam, N., Warkiani, M.E., Ramalingam, N. et al. Numerical and experimental study of capillary-driven flow of PCR solution in hybrid hydrophobic microfluidic networks. Biomed Microdevices 18, 68 (2016). https://doi.org/10.1007/s10544-016-0099-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0099-2

Keywords

Navigation