Skip to main content
Log in

Determination of optimal excitation patterns for local mechanical inner ear stimulation using a physiologically-based model

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Within the field of hearing prosthetics it is known that patients with sufficient residual hearing benefit from the simultaneous employment of hearing aid and cochlear implant. Several attempts have been proposed to combine the sources of the corresponding acoustic and electric stimuli in a single, implantable device. However, since only little is known about the effect of also applying the acoustic stimulus locally from within the inner ear, the current state of research lacks detailed knowledge on the optimal stimulation at the corresponding bionic interface. Within this manuscript, a simple but yet physiologically-based inner ear model is presented which was designed specifically for the analysis of local acoustic or mechanical inner ear stimulation. A detailed model analysis is performed showing that it is capable of mirroring the known mechanical phenomena of this particular stimulation approach. Using the model, it is demonstrated how amplitude and phase shift values of stimuli applied from within the inner ear should be chosen for optimal inner ear stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • G. Békésy, Experiments in Hearing (University of Michigan, McGraw, 1960)

    Google Scholar 

  • H. Bernhard, C. Stieger, Y. Perriard, S. Member, Design of a semi-implantable hearing device for direct acoustic cochlear stimulation. 420 IEEE Trans. Biomed. Eng. 58(2), 420–428 (2011)

    Article  Google Scholar 

  • E. de Boer, Auditory physics. Physical principles in hearing theory. III. Phys. Rep. 203(3), 125–231 (1991). doi:10.1016/0370-1573(91)90068-W

    Article  MathSciNet  Google Scholar 

  • F. Böhnke, W. Arnold, 3D-finite element model of the human cochlea including fluid-structure couplings. J. Otorhinolaryngol. Relat. Spec. 61(5), 305–10 (1999)

    Article  Google Scholar 

  • A. Büchner, M. Schüssler, R.D. Battmer, T. Stöver, A. Lesinski-Schiedat, T. Lenarz, Impact of low-frequency hearing. Audiol. Neurotol. 14(SUPPL. 1), 8–13 (2009). doi:10.1159/000206490

    Google Scholar 

  • T.Y.C. Ching, P. Incerti, M. Hill, Binaural benefits for adults who use hearing aids and cochlear implants in opposite ears. Ear Hear. 25(1), 9–21 (2004). doi:10.1097/01.AUD.0000111261.84611.C8

    Article  Google Scholar 

  • M.F. Dorman, R.H. Gifford, A.J. Spahr, S.A. McKarns, The benefits of combining acoustic and electric stimulation for the recognition of speech, voice and melodies. Audiol. Neurotol. 13(2), 105–112 (2007). doi:10.1159/000111782

    Article  Google Scholar 

  • H. Duifhuis, Cochlear Mechanics, 1st edn (Springer, New York, Dordrecht, Heidelberg, London, 2012). doi:10.1007/978-1-4419-6117-4

    Book  Google Scholar 

  • S.J. Elliott, C.A. Shera, The cochlea as a smart structure. Smart Mater. Struct. 21(6), 1–11 (2012)

    Article  Google Scholar 

  • A. Franks, United States patent US 2003/0012390, (2003), p. A1

  • C. Gerstenberger, F.E. Wolter, Numerical simulation of acoustic streaming within the cochlea. J. Comp. Acoust. 21(4), 1350,019 (2013). doi:10.1142/S0218396X13500197

    Article  MathSciNet  Google Scholar 

  • D.D. Greenwood, A cochlear frequency-position function for several species - 29 years later. J. Acoust. Soc. Am. 87(6), 2592–2605 (1990). doi:10.1121/1.399052

    Article  Google Scholar 

  • M. Harada, N. Ikeuchi, S. Fukui, S. Ando, Fish-bone-structured acoustic sensor toward silicon cochlear systems, in SPIE 3514, Micromachined Devices and Components IV, ed. by P.J. French, K.H. Chau. International Society for Optics and Photonics. doi:10.1117/12.323898, Vol. 266, (1998), pp. 266– 275

  • C.A. von Ilberg, U. Baumann, J. Kiefer, J. Tillein, O.F. Adunka, Electric-acoustic stimulation of the auditory system: A review of the first decade. Audiol. Neurotol. 16(S2), 1–30 (2011). doi:10.1159/000327765

    Article  Google Scholar 

  • C.C. Lee, I. Shen, C. Hume, G. Cao, A Feasibility Study of PZT Thin-Film Microactuators for Hybrid Cochlear Implants. inProc. IEEE Eng. Med. Biol. Soc. doi:10.1109/IEMBS.2005.1616829, Vol. 2, (2005), pp. 1929–1932

  • T. Lenarz, H. Pau, G. Paasche, Cochlear implants. Curr. Pharm. Biotechnol. 14, 1786–1787 (2013)

    Google Scholar 

  • H. Leysieffer, H.P. Zenner, J.W. Baumann, United States patent US 2001 /0049466, (2001), p. A1

  • X. Lifu, H. Xinsheng, T. Na, R. Zhushi, T. Jiabin, 3D-finite element model of the human cochlea including fluid-structure couplings. J. Mech. Med. Biol. 15(3), 1550,039 (2015). doi:10.1142/S0219519415500396

    Article  Google Scholar 

  • Y.W. Liu, S.T. Neely, Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. J. Acoust. Soc. Am. 127(4), 2420–2432 (2010). doi:10.1121/1.3337233

    Article  Google Scholar 

  • S. Lu, A physiologically based nonlinear multicompartment cochlear model with a piezoelectric OHC feedback system (Ph.D. thesis, Boston University, 2009)

  • T.K. Lu, S. Zhak, P. Dallos, R. Sarpeshkar, Fast cochlear amplification with slow outer hair cells. Hearing Research. 214(1–2), 45–67 (2006). doi:10.1016/j.heares.2006.01.018

    Article  Google Scholar 

  • C. Luo, G.Z. Cao, I.Y. Shen, Development of a lead-zirconate-titanate (PZT) thin-film microactuator probe for intracochlear applications. Sensors Actuators A Phys. 201, 1–9 (2013). doi:10.1016/j.sna.2013.06.027

    Article  Google Scholar 

  • N. Mukherjee, R.D. Roseman, J.P. Willging, The piezoelectric cochlear implant: Concept, feasibility, challenges, and issues. J. Biomed. Mater. Res. 53(2), 181–187 (2000). doi:10.1002/(SICI)1097-4636(2000)53:2<181::AID-JBM8>3.0.CO;2-T

    Article  Google Scholar 

  • G. Ni, S.J. Elliott, Effect of basilar membrane radial velocity profile on fluid coupling in the cochlea. J. Acoust. Soc. Am. 133(3), EL181–EL187 (2013)

    Article  Google Scholar 

  • G. Ni, S.J. Elliott, Comparing methods of modeling near field fluid coupling in the cochlea. J. Acoust. Soc. Am. 137(3), 1309–17 (2015). doi:10.1121/1.4908242

    Article  Google Scholar 

  • J.O. Pickles, An Introduction to the Physiology of Hearing, 2nd edn (Academic Press Limited, London, 1988)

    Google Scholar 

  • A. Saremi, S. Stenfelt, A physiological signal transmission model to be used for specific diagnosis of cochlear impairments. AIP Conf. Proc. 1403, 369–373 (2011). doi:10.1063/1.3658113

    Article  Google Scholar 

  • A. Saremi, S. Stenfelt, Effect of metabolic presbyacusis on cochlear responses: A simulation approach using a physiologically-based model. J. Acoust. Soc. Am. 134(4), 2833–2851 (2013). doi:10.1121/1.4820788

    Article  Google Scholar 

  • D. Schurzig, M. Kiewning, S. Schwarzendahl, J. Wallaschek, T.S. Rau, Feasibility Analysis of Piezoelectric Hearing Prostheses Implanted into the Inner Ear. in Proc. of the ANSYS Conference & 33rd CADFEM Users’s Meeting. Bremen (Germany) , (2015)

  • K. Somayaji, R. Aroor, Middle ear implants. Archives of Medicine and Health Sciences. 1(2), 183(2013). doi:10.4103/2321-4848.123049

    Article  Google Scholar 

  • P. Wriggers, Computational Contact Mechanics (Springer-Verlag, Berlin, Heidelberg, 2006)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) within the Cluster of Excellence Hearing4all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schurzig.

Appendix

Appendix

The parameters listed in Table 2 state all values employed for the presented numerical results, i.e. the model displayed in Fig. 3b. They are based on the studies proposed in Békésy (1960) and Liu and Neely (2010), the results of which were also employed within the precursor model described in Saremi and Stenfelt (2013) (see also Fig. 3a).

Table 2 Model parameters employed within the presented studies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schurzig, D., Rau, T.S., Wallaschek, J. et al. Determination of optimal excitation patterns for local mechanical inner ear stimulation using a physiologically-based model. Biomed Microdevices 18, 36 (2016). https://doi.org/10.1007/s10544-016-0061-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0061-3

Keywords

Navigation