Skip to main content
Log in

A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Inspired by the paper platforms for 3-D cell culture, a paper-based microfluidic device containing drug concentration gradient was designed and constructed for investigating cell response to drugs based on high throughput analysis. This drug gradient generator was applied to generate concentration gradients of doxorubicin (DOX) as the model drug. HeLa cells encapsulated in collagen hydrogel were incubated in the device reservoirs to evaluate the cell viability based on the controlled release of DOX spatially. It was demonstrated that drug diffusion through the paper fibers created a gradient of drug concentration, which influenced cell viability. This drug screening platform has a great opportunity to be applied for drug discovery and diagnostic studies with simultaneous and parallel tests of drugs under various gradient concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat, J. C. Baret, M. Marquez, A. M. Klibanov, A. D. Griffiths, D. A. Weitz, Proc. Natl. Acad. Sci. U. S. A. 107, 4004 (2010)

    Article  Google Scholar 

  • N. W. Choi, M. Cabodi, B. Held, J. P. Gleghorn, L. J. Bonassar, A. D. Stroock, Nat. Mater. 6, 908 (2007)

    Article  Google Scholar 

  • B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, N. L. Jeon, Lab Chip 5, 401 (2005)

    Article  Google Scholar 

  • B. G. Chung, L. F. Kang, A. Khademhosseini, Expert. Opin. Drug Discov. 2, 1653 (2007)

    Article  Google Scholar 

  • M. C. Cushing, K. S. Anseth, Science 316, 1133 (2007)

    Article  Google Scholar 

  • W. P. Daley, S. B. Peters, M. Larsen, J. Cell Sci. 121, 255 (2008)

    Article  Google Scholar 

  • R. Derda, A. Laromaine, A. Mammoto, S. K. Y. Tang, T. Mammoto, D. E. Ingber, G. M. Whitesides, Proc. Natl. Acad. Sci. U. S. A. 106, 18457 (2009)

    Article  Google Scholar 

  • R. Derda, S. K. Y. Tang, A. Laromaine, B. Mosadegh, E. Hong, M. Mwangi, A. Mammoto, D. E. Ingber, G. M. Whitesides, PLoS One 6 (2011)

  • S. K. W. Dertinger, D. T. Chiu, N. L. Jeon, G. M. Whitesides, Anal. Chem. 73, 1240 (2001)

    Article  Google Scholar 

  • Y. Du, J. Shim, M. Vidula, M. J. Hancock, E. Lo, B. G. Chung, J. T. Borenstein, M. Khabiry, D. M. Cropek, A. Khademhosseini, Lab Chip 9, 761 (2009)

    Article  Google Scholar 

  • G. S. Du, J. Z. Pan, S. P. Zhao, Y. Zhu, J. M. J. den Toonder, Q. Fang, Anal. Chem. 85, 6740 (2013)

    Article  Google Scholar 

  • E. M. Fenton, M. R. Mascarenas, G. P. Lopez, S. S. Sibbett, ACS Appl. Mater. Interfaces 1, 124 (2009)

    Article  Google Scholar 

  • T. G. Fernandes, M. M. Diogo, D. S. Clark, J. S. Dordick, J. M. S. Cabral, Trends Biotechnol. 27, 342 (2009)

    Article  Google Scholar 

  • E. L. Fu, S. Ramsey, P. Kauffman, B. Lutz, P. Yager, Microfluid. Nanofluid. 10, 29 (2011)

    Article  Google Scholar 

  • J. K. He, Y. A. Du, J. L. Villa-Uribe, C. M. Hwang, D. C. Li, A. Khademhosseini, Adv. Funct. Mater. 20, 131 (2010)

    Article  Google Scholar 

  • M. A. Holden, S. Kumar, E. T. Castellana, A. Beskok, P. S. Cremer, Sensor. Actuat B-Chem. 92, 199 (2003)

    Article  Google Scholar 

  • J. Hong, J. B. Edel, A. J. deMello, Drug Discov. Today 14, 134 (2009)

  • X. Huang, C. S. Brazel, J. Control. Release 73, 121 (2001)

    Article  Google Scholar 

  • Y. J. Hwang, J. G. Lyubovitsky, Anal. Methods 3, 529 (2011)

    Article  Google Scholar 

  • H. Juvonen, A. Maattanen, P. Lauren, P. Ihalainen, A. Urtti, M. Yliperttula, J. Peltonen, Acta Biomater. 9, 6704 (2013)

    Article  Google Scholar 

  • L. F. Kang, B. G. Chung, R. Langer, A. Khademhosseini, Drug Discov. Today 13, 1 (2008)

    Article  Google Scholar 

  • J. Kim, D. Taylor, N. Agrawal, H. Wang, H. Kim, A. Han, K. Rege, A. Jayaraman, Lab Chip 12, 1813 (2012)

    Article  Google Scholar 

  • X. Li, J. F. Tian, G. Garnier, W. Shen, Colloid Surf. B-Biointerfaces 76, 564 (2010)

    Article  Google Scholar 

  • X. Li, D. R. Ballerini, W. Shen, Biomicrofluidics 6 (2012)

  • A. W. Martinez, S. T. Phillips, M. J. Butte, G. M. Whitesides, Angew. Chem.-Int. Edit. 46, 1318 (2007)

  • A. W. Martinez, S. T. Phillips, G. M. Whitesides, E. Carrilho, Anal. Chem. 82, 3 (2010)

    Article  Google Scholar 

  • J. L. Osborn, B. Lutz, E. Fu, P. Kauffman, D. Y. Stevens, P. Yager, Lab Chip 10, 2659 (2010)

    Article  Google Scholar 

  • S. Ostrovidov, N. Annabi, A. Seidi, M. Ramalingam, F. Dehghani, H. Kaji, A. Khademhosseini, Anal. Chem. 84, 1302 (2012)

    Article  Google Scholar 

  • S. L. Peterson, A. McDonald, P. L. Gourley, D. Y. Sasaki, J. Biomed. Mater. Res. Part A 72A, 10 (2005)

    Article  Google Scholar 

  • J. Pihl, J. Sinclair, E. Sahlin, M. Karlsson, F. Petterson, J. Olofsson, O. Orwar, Anal. Chem. 77, 3897 (2005)

    Article  Google Scholar 

  • A. R. Rezk, A. Qi, J. R. Friend, W. H. Li, L. Y. Yeo, Lab Chip 12, 773 (2012)

    Article  Google Scholar 

  • A. Seidi, H. Kaji, N. Annabi, S. Ostrovidov, M. Ramalingam, A. Khademhosseini, Biomicrofluidics 5 (2011a)

  • A. Seidi, M. Ramalingam, I. Elloumi-Hannachi, S. Ostrovidov, A. Khademhosseini, Acta Biomater. 7, 1441 (2011b)

    Article  Google Scholar 

  • S. A. Sundberg, Curr. Opin. Biotechnol. 11, 47 (2000)

    Article  Google Scholar 

  • A. G. G. Toh, Z. P. Wang, C. Yang, N. T. Nguyen, Microfluid. Nanofluid. 16, 1 (2004)

    Article  Google Scholar 

  • G. M. Walker, J. Q. Sai, A. Richmond, M. Stremler, C. Y. Chung, J. P. Wikswo, Lab Chip 5, 611 (2005)

    Article  Google Scholar 

  • A. P. Wong, R. Perez-Castillejos, J. C. Love, G. M. Whitesides, Biomaterials 29, 1853 (2008)

    Article  Google Scholar 

  • C. G. Yang, Y. F. Wu, Z. R. Xu, J. H. Wang, Lab Chip 11, 3305 (2011)

    Article  Google Scholar 

  • J. Yu, S. Wang, L. Ge, S. Ge, Biosens. Bioelectron. 26, 3284 (2011)

    Article  Google Scholar 

  • Y. Zhou, Y. Wang, T. Mukherjee, Q. Lin, Lab Chip 9, 1439 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Tier 2 Academic Research Fund (ARC 22/13) and a Tier 1 Academic Research Fund (RG 37/14) from the Ministry of Education of Singapore awarded to Y.K. The Ph.D. scholarship from Nanyang Technological University awarded to P.X. is gratefully acknowledged. P.X. also thanks Yuli Kang for assistance in paper chip fabrication and setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejun Kang.

Additional information

B. Hong and P. Xue contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, B., Xue, P., Wu, Y. et al. A concentration gradient generator on a paper-based microfluidic chip coupled with cell culture microarray for high-throughput drug screening. Biomed Microdevices 18, 21 (2016). https://doi.org/10.1007/s10544-016-0054-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-016-0054-2

Keywords

Navigation