Skip to main content
Log in

Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Establishing fundamentals for regulating cell behavior with engineered physical environments, such as topography and stiffness, requires a large number of cell culture experiments. However, cell culture experiments in cell-surface interaction studies are generally labor-intensive and time-consuming due to many experimental tasks, such as multiple fabrication processes in sample preparation and repetitive medium exchange in cell culture. In this work, a novel aquatic flower-inspired cell culture platform (AFIP) is presented. AFIP aims to facilitate the experiments on the cell-surface interaction studies, especially the medium exchange process. AFIP was devised to capture and dispense cell culture medium based on interactions between an elastic polymer substrate and a liquid medium. Thus, the medium exchange can be performed easily and without the need of other instruments, such as a vacuum suction and pipette. An appropriate design window of AFIP, based on scaling analysis, was identified to provide a criterion for achieving stability in medium exchange as well as various surface characteristics of the petal substrates. The developed AFIP, with physically engineered petal substrates, was also verified to exchange medium reliably and repeatedly. A closed structure capturing the medium was sustained stably during cell culture experiments. NIH3T3 proliferation results also demonstrated that AFIP can be applied to the cell-surface interaction studies as an alternative to the conventional method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • E. Berthier, E. W. Young, D. Beebe, Lab Chip 12, 1224–1237 (2012)

    Article  Google Scholar 

  • C. J. Bettinger, R. Langer, J. T. Borenstein, Angew. Chem. Int. Ed. 48, 5406–5415 (2009)

    Article  Google Scholar 

  • L. J. Burton, N. Cheng, C. Vega, J. Andres, J. W. Bush, Bioinspir. Biomim. 8, 044003 (2013)

    Article  Google Scholar 

  • K. J. Cha, M.-H. Na, H. W. Kim, D. S. Kim, J. Micromech. Microeng. 24, 055002 (2014)

    Article  Google Scholar 

  • E. M. Chandler, C. M. Berglund, J. S. Lee, W. J. Polacheck, J. P. Gleghorn, B. J. Kirby, C. Fischbach, Biotechnol. Bioeng. 108, 1683–1692 (2011)

    Article  Google Scholar 

  • M. J. Choi, J. Y. Park, K. J. Cha, J. W. Rhie, D. W. Cho, D. S. Kim, Biofabrication 4, 045006 (2012)

    Article  Google Scholar 

  • C. Duprat, J. M. Aristoff, H. A. Stone, J. Fluid Mech. 679, 641–654 (2011)

    Article  Google Scholar 

  • J. El-Ali, P. K. Sorger, K. F. Jensen, Nature 442, 403–411 (2006)

    Article  Google Scholar 

  • R. Gómez-Sjöberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, S. R. Quake, Anal. Chem. 79, 8557–8563 (2007)

    Article  Google Scholar 

  • D. S. Gray, J. Tien, C. S. Chen, J. Biomed, Mater. Res. A 66, 605–614 (2003)

    Google Scholar 

  • A. W. Holle, A. J. Engler, Curr. Opin. Biotechnol. 22, 648–654 (2011)

    Article  Google Scholar 

  • F.-Y. Hsu, K.-L. Kuo, H.-M. Liou, J. Taiwan Inst. Chem. E. 43, 165–171 (2012)

    Article  Google Scholar 

  • C. F. Huang, H. C. Cheng, Y. Lin, C. W. Wu, Y. K. Shen, Int. J. Precis. Eng. Manuf. 15, 689–693 (2014)

    Article  Google Scholar 

  • P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, L. P. Lee, Lab Chip 5, 44–48 (2005)

    Article  Google Scholar 

  • S. Jin, J. H. Kim, W. S. Yun, Int. J. Precis. Eng. Manuf. 16, 2235–2239 (2015)

    Article  Google Scholar 

  • L. Kim, Y. C. Toh, J. Voldman, H. Yu, Lab Chip 7, 681–694 (2007)

    Article  Google Scholar 

  • E. J. Kim, C. A. Boehm, A. Mata, A. J. Fleischman, G. F. Muschler, S. Roy, Acta Biomater. 6, 160–169 (2010)

    Article  Google Scholar 

  • H. Liao, A.-S. Andersson, D. Sutherland, S. Petronis, B. Kasemo, P. Thomsen, Biomaterials 24, 649–654 (2003)

    Article  Google Scholar 

  • I. Meyvantsson, J. W. Warrick, S. Hayes, A. Skoien, D. J. Beebe, Lab Chip 8, 717–724 (2008)

    Article  Google Scholar 

  • S. Prauzner-Bechcicki, J. Raczkowska, E. Madej, J. Pabijan, J. Lukes, J. Sepitka, J. Rysz, K. Awsiuk, A. Bernasik, A. Budkowski, M. Lekka, J. Mech, Behav. Biomed. 41, 13–22 (2015)

    Article  Google Scholar 

  • F. Rehfeldt, A. J. Engler, A. Eckhardt, F. Ahmed, D. E. Discher, Adv. Drug Deliv. Rev. 59, 1329–1339 (2007)

    Article  Google Scholar 

  • P. M. Reis, J. Hure, S. Jung, J. W. M. Bush, C. Clanet, Soft Matter 6, 5705–5708 (2010)

    Article  Google Scholar 

  • A. Rocha, M. Hahn, H. Liang, J. Mater. Sci. 45, 811–817 (2009)

    Article  Google Scholar 

  • B. Roman, J. Bico, J. Phys. Condens. Matter 22, 493101 (2010)

    Article  Google Scholar 

  • J. H. Seo, K. Sakai, N. Yui, Acta Biomater. 9, 5493–5501 (2013)

    Article  Google Scholar 

  • J. Solon, I. Levental, K. Sengupta, P. C. Georges, P. A. Janmey, Biophys. J. 93, 4453–4461 (2007)

    Article  Google Scholar 

  • K. H. Song, S. J. Park, D. S. Kim, J. Doh, Biomaterials 51, 151–160 (2015)

    Article  Google Scholar 

  • Z. Wang, A. A. Volinsky, N. D. Gallant, J. Appl. Polym. Sci. 131, 41050 (2014)

    Google Scholar 

  • R. J. Whittaker, R. Booth, R. Dyson, C. Bailey, L. Parsons Chini, S. Naire, S. Payvandi, Z. Rong, H. Woollard, L. J. Cummings, S. L. Waters, L. Mawasse, J. B. Chaudhuri, M. J. Ellis, V. Michael, N. J. Kuiper, S. Cartmell, J. Theor. Biol. 256, 533–546 (2009)

    Article  Google Scholar 

  • E. W. Young, D. J. Beebe, Chem. Soc. Rev. 39, 1036–1048 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Industrial Technology Innovation Program (No. 10048358) funded by the Ministry of Trade, Industry & Energy (MI, Korea) and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2014R1A2A1A01006527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Sung Kim.

Electronic Supplementary Material

ESM 1

(PDF 605 kb)

ESM 2

(WMV 6.15 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Park, S.J., Han, S.J. et al. Aquatic flower-inspired cell culture platform with simplified medium exchange process for facilitating cell-surface interaction studies. Biomed Microdevices 18, 3 (2016). https://doi.org/10.1007/s10544-015-0026-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-0026-y

Keywords

Navigation