Skip to main content
Log in

Electrical sensing of DNA-hybridization using two-port network based on suspended carbon nanotube membrane

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An approach was presented for electrical sensing of deoxyribonucleic acid (DNA)-hybridization in solution using a two-port network based on single-walled suspended carbon nanotube (SWCNT) membrane. A single stranded probe DNA (5′-NH2-(CH2)6-CGC CGA TTG GAC AAA ACT TAA A-3′) was immobilized on the SWCNT membrane. A solution with the complementary single stranded DNA (D′FITC: 5′-FITC-T TTA AGT TTT GTC CAA TCG GCG-3′) in various concentrations was then dropped on the membrane. The two-port network composed of the suspended SWCNT membrane and its underneath gate were characterized by coupling with a vector network analyzer. The resonance frequency of transmission coefficient S21 was observed to be around 10 MHz. The resonance frequency shifts with DNA-hybridization, and the sensing limit was approximately 50 nM. The advantages of this approach include low-noise frequency output, solution based real time detection and capable of on-chip integration, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • M. Archer, M. Christophersen, P.M. Fauchet, Biomed. Microdevices 6, 203–211 (2004)

    Article  Google Scholar 

  • K. Bougot-Robin, R. Kodzius, W. Yue, L. Chen, S. Li, X.X. Zhang, H. Benisty, W. Wen, Biomed. Microdevices 16, 287–299 (2014)

    Article  Google Scholar 

  • J. S. Bulmer, J. Martens, L. Kurzepa, T. Gizewski, M. Egilmez, M.G. Blamire, N. Yahya, K.K.K. Koziol, Scientific reports 4, (2014)

  • A. Cherstvy, Biosens. Bioelectron. 46, 162–170 (2013)

    Article  Google Scholar 

  • J.-M. Choi, S.-U. Hwang, C.-H. Kim, H.-H. Yang, C. Jung, H.G. Park, J.-B. Yoon, Y.-K. Choi, Appl. Phys. Lett. 100, 163701 (2012)

    Article  Google Scholar 

  • V. Desai, S. Sanisetty, B. Steber, E. Sapi, B. Aliane, S. Sinha, P. Patra, Journal of Nanotechnology 2011, (2011)

  • M. Dragoman, A. Cismaru, A. Radoi, M. Voicu, D. Dragoman, Appl.Phys.Lett. 99, 253106-253106-253103 (2011)

  • E. Gui, L. Li, K. Zhang, Y. Xu, X. Dong, X. Ho et al., Appl. Phys. Lett. 89, 232104 (2006)

    Article  Google Scholar 

  • E.L. Gui, L.-J. Li, K. Zhang, Y. Xu, X. Dong, X. Ho, P.S. Lee, J. Kasim, Z. Shen, J.A. Rogers, J. Am. Chem. Soc. 129, 14427–14432 (2007)

    Article  Google Scholar 

  • P. Hu, J. Zhang, L. Li, Z. Wang, W. O’Neill, P. Estrela, Sensors 10, 5133–5159 (2010)

    Article  Google Scholar 

  • F. Huber, H. Lang, N. Backmann, D. Rimoldi, C. Gerber, Nat. Nanotechnol. 8, 125–129 (2013)

    Article  Google Scholar 

  • G. Hui, J.K. Streit, J.A. Fagan, A.R. Hight Walker, C. Zhou, M. Zheng, Nano Lett. (2015)

  • B. Ilic, Y. Yang, K. Aubin, R. Reichenbach, S. Krylov, H. Craighead, Nano Lett. 5, 925–929 (2005)

    Article  Google Scholar 

  • H.U. Khan, M.E. Roberts, O. Johnson, R. Förch, W. Knoll, Z. Bao, Adv. Mater. 22, 4452–4456 (2010)

    Article  Google Scholar 

  • B. Kim, J. Lee, S. Namgung, J. Kim, J.Y. Park, M.-S. Lee, S. Hong, Sens. Actuators B 169, 182–187 (2012)

    Article  Google Scholar 

  • S. Lai, A. Caboni, D. Loi, M. Barbaro, Electron devices. IEEE Transactions on 59, 2512–2519 (2012)

    Article  Google Scholar 

  • H.-J. Lee, H.-S. Lee, K.-H. Yoo, J.-G. Yook, J. Appl. Phys. 108, 014908 (2010)

    Article  Google Scholar 

  • K.-H. Lee, J.O. Lee, S. Choi, J.-B. Yoon, G.-H. Cho, Biosens. Bioelectron. 31, 343–348 (2012)

    Article  Google Scholar 

  • M. Lu, M.-W. Jang, G. Haugstad, S.A. Campbell, T. Cui, Appl. Phys. Lett. 94, 261903 (2009)

    Article  Google Scholar 

  • M.T. Martínez, Y.-C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, J. Bokor, Nano Lett. 9, 530–536 (2009)

    Article  Google Scholar 

  • D. Martins, V. Chu, D. Prazeres, J. Conde, Appl. Phys. Lett. 99, 183702 (2011)

    Article  Google Scholar 

  • T. Murmu, S. Adhikari, Sens. Actuators A 173, 41–48 (2012)

    Article  Google Scholar 

  • J. Musayev, Y. Adlgüzel, H. Külah, S. Eminoglu, T. Akln, IEEE Sensors J. 14, 1608–1616 (2014)

    Article  Google Scholar 

  • B. Nandy, M. Santosh, P.K. Maiti, J. Biosci. 37, 457–474 (2012)

    Article  Google Scholar 

  • E. Özkumur, S. Ahn, A. Yalçın, C.A. Lopez, E. Çevik, R.J. Irani, C. DeLisi, M. Chiari, M. Selim Ünlü, Biosens. Bioelectron. 25, 1789–1795 (2010)

    Article  Google Scholar 

  • E. Paleček, M. Fojta, M. Tomschik, J. Wang, Biosens. Bioelectron. 13, 621–628 (1998)

    Article  Google Scholar 

  • D. Ramos, M. Arroyo-Hernández, E. Gil-Santos, H. Duy Tong, C. Van Rijn, M. Calleja, J. Tamayo, Anal. Chem. 81, 2274–2279 (2009)

    Article  Google Scholar 

  • M. Sensors, C.P. Actuators B:, N. Yilmaz, I. Martín-Fernández, R. Villa, P. Godignon, M. Del Valle, J. Bartrolí, M.J. Esplandiu, Sens. Actuators B 162, 120–127 (2012)

    Article  Google Scholar 

  • S. Sorgenfrei, C.Y. Chiu, R.L. Gonzalez Jr., Y.J. Yu, P. Kim, C. Nuckolls, K.L. Shepard, Nat. Nanotechnol. 6, 126–132 (2011)

    Article  Google Scholar 

  • A. Star, E. Tu, J. Niemann, J.-C.P. Gabriel, C.S. Joiner, C. Valcke, Proc. Natl. Acad. Sci. U. S. A. 103, 921–926 (2006)

    Article  Google Scholar 

  • M. Su, S. Li, V.P. Dravid, Appl. Phys. Lett. 82, 3562–3564 (2003)

    Article  Google Scholar 

  • J.D. Suter, I.M. White, H. Zhu, H. Shi, C.W. Caldwell, X. Fan, Biosens. Bioelectron. 23, 1003–1009 (2008)

    Article  Google Scholar 

  • V. Toccafondo, J. García-Rupérez, M. Bañuls, A. Griol, J. Castelló, S. Peransi-Llopis, A. Maquieira, Opt. Lett. 35, 3673–3675 (2010)

    Article  Google Scholar 

  • T. Wang, B. Liu, S. Jiang, H. Rong, M. Lu, J. Micromech. Microeng. 24, 055025 (2014)

    Article  Google Scholar 

  • R.L. Zaffino, M. Mir, J. Samitier, Nanotechnology 25, 105501 (2014)

    Article  Google Scholar 

  • A. Zebda, M. Labeau, J.-P. Diard, V. Lavalley, V. Stambouli, Sens. Actuators B 144, 176–182 (2010)

    Article  Google Scholar 

  • M. Zheng, A. Jagota, M.S. Strano, A.P. Santos, P. Barone, S.G. Chou, B.A. Diner, M.S. Dresselhaus, R.S. Mclean, G.B. Onoa, Science 302, 1545–1548 (2003)

    Article  Google Scholar 

  • H.W. Zhu, G.D. Wang, D.L. Xie, B. Cai, Y.M. Liu, X.Z. Zhao, Biomed. Microdevices 16, 479–485 (2014)

    Article  Google Scholar 

  • C. Zuniga, M. Rinaldi, S.M. Khamis, A. Johnson, G. Piazza, Appl. Phys. Lett. 94, 223122 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC under project no. 61071010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zheng, ZZ., Feng, XX. et al. Electrical sensing of DNA-hybridization using two-port network based on suspended carbon nanotube membrane. Biomed Microdevices 17, 103 (2015). https://doi.org/10.1007/s10544-015-0009-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-015-0009-z

Keyword

Navigation