Skip to main content

Advertisement

Log in

A double-sided, single-chip integration scheme using through-silicon-via for neural sensing applications

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present a new double-sided, single-chip monolithic integration scheme to integrate the CMOS circuits and MEMS structures by using through-silicon-via (TSV). Neural sensing applications were chosen as the implementation example. The proposed heterogeneous device integrates standard 0.18 μm CMOS technology, TSV and neural probe array into a compact single chip device. The neural probe array on the back-side of the chip is connected to the CMOS circuits on the front-side of the chip by using low-parasitic TSVs through the chip. Successful fabrication results and detailed characterization demonstrate the feasibility and performance of the neural probe array, TSV and readout circuitry. The fabricated device is 5 × 5 mm2 in area, with 16 channels of 150 μm-in-length neural probe array on the back-side, 200 μm-deep TSV through the chip and CMOS circuits on the front-side. Each channel consists of a 5 × 6 probe array, 3 × 14 TSV array and a differential-difference amplifier (DDA) based analog front-end circuitry with 1.8 V supply, 21.88 μW power consumption, 108 dB CMRR and 2.56 μVrms input referred noise. In-vivo long term implantation demonstrated the feasibility of presented integration scheme after 7 and 58 days of implantation. We expect the conceptual realization can be extended for higher density recording array by using the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • K. Abdelhalim, H.M. Jafari, L. Kokarovtseva, J.L. Perez Velazquez, R. Genov, 64-channel UWB wireless neural vector analyzer SOC with a closed-loop phase synchrony-triggered neurostimulator. Solid-State Circ. IEEE J. 48(10), 2494–2510 (2013)

    Article  Google Scholar 

  • A.K. Ahuja, M.R. Behrend, J.J. Whalen III, M.S. Humayun, J.D. Weiland, The dependence of spectral impedance on disc microelectrode radius. Ieee T Bio-Med Eng 55(4), 1457–1460 (2008)

    Article  Google Scholar 

  • K. Arimoto, S. Kavusi, K. Salisbury. What’s next in robots? Sensing, processing, networking toward human brain and body. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 I.E. International, pp. 514–514 (2012)

  • J.N.Y. Aziz, K. Abdelhalim, R. Shulyzki, R. Genov, B.L. Bardakjian, M. Derchansky, D. Serletis, P.L. Carlen, 256-channel neural recording and delta compression microsystem with 3D electrodes. Ieee J. Solid-State Circ. 44(3), 995–1005 (2009)

    Article  Google Scholar 

  • G. Buzsaki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)

    Article  Google Scholar 

  • C.W. Chang, Chiou, J.C. Surface-mounted dry electrode and analog-front-end systems for physiological signal measurements. Life Science Systems and Applications Workshop, 2009. LiSSA 2009. IEEE/NIH, pp. 108–111. (2009)

  • C.-W. Chang, J.-C. Chiou, A wireless and batteryless microsystem with implantable grid electrode/3-dimensional probe array for ECoG and extracellular neural recording in rats. Sensors-Basel 13(4), 4624–4639 (2013)

    Article  Google Scholar 

  • C.-L. Chang, C.-W. Chang, H.-Y. Huang, C.-M. Hsu, C.-H. Huang, J.-C. Chiou, C.-H. Luo, A power-efficient Bio-potential acquisition device with DS-MDE sensors for long-term healthcare monitoring applications. Sensors-Basel 10(5), 4777–4793 (2010)

    Article  Google Scholar 

  • C.-W. Chang, P.-T. Huang, L.-C. Chou, S.-L. Wu, S.-W. Lee, C.-T. Chuang, K.-N. Chen, J.-C. Chiou, W. Hwang, Y.-C. Lee, C.-H. Wu, K.-H. Chen, C.-T. Chiu, Tong, H.-M. Through-silicon-via-based double-side integrated microsystem for neural sensing applications. 2013 I.E. International Solid-State Circuits Conference (ISSCC 2013), 102–103. (2013)

  • Q. Chengliang, J. Parramon, E. Sanchez-Sinencio, A micropower Low-noise neural recording front-End circuit for epileptic seizure detection. Solid-State Circ. IEEE J. 46(6), 1392–1405 (2011)

    Article  Google Scholar 

  • J. Clausen, Man, machine and in between. Nature 457(7233), 1080–1081 (2009)

    Article  Google Scholar 

  • R. Das, D. Gandhi, S. Krishnan, L. Saggere, P.J. Rousche, A benchtop system to assess cortical neural interface micromechanics. IEEE Trans. Biomed. Eng. 54(6), 1089–1096 (2007)

    Article  Google Scholar 

  • H. Eun Jung, R.A. Andersen, The utility of multichannel local field potentials for brain-machine interfaces. J. Neural Eng. 10(4), 046005 (046012 pp.)-046005 (046012 pp.) (2013)

  • W. Franks, I. Schenker, P. Schmutz, A. Hierlemann, Impedance characterization and modeling of electrodes for biomedical applications. IEEE Trans. Biomed. Eng. 52(7), 1295–1302 (2005)

    Article  Google Scholar 

  • B. Gosselin, A.E. Ayoub, J.F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, D. Guitton, A mixed-signal multichip neural recording interface with bandwidth reduction. Biomed. Circ. Syst. IEEE Trans. 3(3), 129–141 (2009)

    Article  Google Scholar 

  • L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)

    Article  Google Scholar 

  • J.C. Horton, D.L. Adams, The cortical column: a structure without a function. Philos. Trans. R. Soc. B Biol Sci 360(1456), 837–862 (2005)

    Article  Google Scholar 

  • D.H. Hubel, T.N. Wiesel, M.P. Stryker, Orientation columns in macaque monkey visual-cortex demonstrated by 2-deoxyglucose autoradiographic technique. Nature 269(5626), 328–330 (1977)

    Article  Google Scholar 

  • E.J. Hwang, P.M. Bailey, R.A. Andersen, Volitional control of neural activity relies on the natural motor repertoire. Curr. Biol. 23(5), 353–361 (2013)

    Article  Google Scholar 

  • X. Jian, T. Wu, Y. Zhi, A New system architecture for future long-term high-density neural recording. Circ. Syst. II Express Briefs IEEE Trans. 60(7), 402–406 (2013)

    Google Scholar 

  • H. Jui-Mei, L. Rieth, R.A. Normann, P. Tathireddy, F. Solzbacher, Encapsulation of an integrated neural interface device with parylene C. IEEE Trans. Biomed. Eng. 56(1), 23–29 (2009)

    Article  Google Scholar 

  • T. Kawano, T. Harimoto, A. Ishihara, K. Takei, T. Kawashima, S. Usui, M. Ishida, Electrical interfacing between neurons and electronics via vertically integrated sub-4 mu m-diameter silicon probe arrays fabricated by vapor-liquid-solid growth. Biosens. Bioelectron. 25(7), 1809–1815 (2010)

    Article  Google Scholar 

  • X. Kun, F.C. Lee, D. Boroyevich, Extraction of parasitics within wire-bond IGBT modules. Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998., Thirteenth Annual, pp. 497–503 vol.491. (1998)

  • C.M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, W. Eberle, C. Bartic, R. Puers, G. Gielen, A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability. Biomed. Circ. Syst. IEEE Trans. 6(2), 101–110 (2012)

    Article  Google Scholar 

  • C.M. Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R.F. Yazicioglu, G. Gielen, An implantable 455-active-electrode 52-channel CMOS neural probe. 2013 I.E. International Solid-State Circuits Conference (ISSCC 2013), 288–289. (2013)

  • S.M.E. Merriam, O. Srivannavit, M.N. Gulari, K.D. Wise, A three-dimensional 64-site folded electrode array using planar fabrication. J Microelectromech S 20(3), 594–600 (2011)

    Article  Google Scholar 

  • K.J. Miller, L.B. Sorensen, J.G. Ojemann, M. den Nijs, Power-Law scaling in the brain surface electric potential. Plos Comput Biol 5(12) (2009)

  • R. Muller, S. Gambini, J.M. Rabaey, A 0.013mm2 5uW DC-coupled neural signal acquisition IC with 0.5V supply. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 I.E. International, pp. 302–304. (2011)

  • R. Muller, S. Gambini, J.M. Rabaey, A 0.013 mm2, 5uW, DC-coupled neural signal acquisition IC with 0.5 V supply. Solid-State Circ. IEEE J. 47(1), 232–243 (2012)

    Article  Google Scholar 

  • K.A. Ng, P.K. Chan, A CMOS analog front-end IC for portable EEG/ECG monitoring applications. Circ. Syst. I Regular Papers IEEE Trans. 52(11), 2335–2347 (2005)

    Article  Google Scholar 

  • A.V. Nurmikko, J.P. Donoghue, L.R. Hochberg, W.R. Patterson, Y.K. Song, C.W. Bull, D.A. Borton, F. Laiwalla, S. Park, Y. Ming, J. Aceros, Listening to brain microcircuits for interfacing with external world-progress in wireless implantable microelectronic neuroengineering devices. P Ieee 98(3), 375–388 (2010)

    Article  Google Scholar 

  • R.H. Olsson, D.L. Buhl, A.M. Sirota, G. Buzsaki, K.D. Wise, Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. Ieee T Bio-Med Eng 52(7), 1303–1311 (2005)

    Article  Google Scholar 

  • C. Peng, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 130 mg 300 muW 10 b implantable blood-pressure-sensing microsystem for real-time genetically engineered mice monitoring. 2009 I.E. International Solid-State Circuits Conference (ISSCC 2009), 428–429, 429a. (2009)

  • G.E. Perlin, K.D. Wise, An ultra compact integrated front End for wireless neural recording Microsystems. J Microelectromech S 19(6), 1409–1421 (2010)

    Article  Google Scholar 

  • C.A. Schevon, S.A. Weiss, G. McKhann Jr., R.R. Goodman, R. Yuste, R.G. Emerson, A.J. Trevelyan, Evidence of an inhibitory restraint of seizure activity in humans. Nat. Commun. 3 (2012)

  • K. Seidl, B. Lemke, H. Ramirez, S. Herwik, P. Ruther, O. Paul, CMOS-based high-density silicon microprobe for stress mapping in intracortical applications. 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2010), 35–38. (2010)

  • A.M. Sodagar, G.E. Perlin, Y. Yao, K. Najafi, K.D. Wise, An Implantable 64-Channel Wireless Microsystem for Single-Unit Neural Recording. Ieee Journal of Solid-State Circuits 44(9), 2591–2604 (2009a)

    Article  Google Scholar 

  • A.M. Sodagar, K.D. Wise, K. Najafi, A Wireless Implantable Microsystem for Multichannel Neural Recording. Ieee Trans. Microw. Theory Tech. 57(10), 2565–2573 (2009b)

    Article  Google Scholar 

  • Y.K. Song, W.R. Patterson, C.W. Bull, J. Beals, N. Hwang, A.P. Deangelis, C. Lay, J.L. McKay, A.V. Nurmikko, M.R. Fellows, J.D. Simeral, J.P. Donoghue, B.W. Connors, Development of a chipscale integrated microelectrode/microelectronic device for brain implantable, neuroengineering applications. Ieee Trans Neural Syst Rehabil Eng 13(2), 220–226 (2005)

    Article  Google Scholar 

  • Y.K. Song, D.A. Borton, S. Park, W.R. Patterson, C.W. Bull, F. Laiwalla, J. Mislow, J.D. Simeral, J.P. Donoghue, A.V. Nurmikko, Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces. Ieee Trans Neural Syst Rehabil Eng 17(4), 339–345 (2009)

    Article  Google Scholar 

  • B.K. Thurgood, D.J. Warren, N.M. Ledbetter, G.A. Clark, R.R. Harrison, A Wireless Integrated Circuit for 100-Channel Charge-Balanced Neural Stimulation. Ieee T Biomed Circ S 3(6), 405–414 (2009)

    Article  Google Scholar 

  • T. Torfs, A.A.A. Aarts, M.A. Erismis, J. Aslam, R.F. Yazicioglu, K. Seidl, S. Herwik, I. Ulbert, B. Dombovari, R. Fiath, B.P. Kerekes, R. Puers, O. Paul, P. Ruther, C. Van Hoof, H.P. Neves, Two-Dimensional Multi-Channel Neural Probes With Electronic Depth Control. Ieee T Biomed Circ S 5(5), 403–412 (2011)

    Article  Google Scholar 

  • S. Venkatraman, K. Elkabany, J.D. Long, Y. Yimin, J.M. Carmena, A System for Neural Recording and Closed-Loop Intracortical Microstimulation in Awake Rodents. IEEE Trans. Biomed. Eng. 56(1), 15–22 (2009)

    Article  Google Scholar 

  • J. Viventi, D.-H. Kim, L. Vigeland, E.S. Frechette, J.A. Blanco, Y.-S. Kim, A.E. Avrin, V.R. Tiruvadi, S.-W. Hwang, A.C. Vanleer, D.F. Wulsin, K. Davis, C.E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J.A. Rogers, B. Litt, Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14(12), 1599–U1138 (2011)

    Article  Google Scholar 

  • B. Voytek, R.T. Canolty, A. Shestyuk, N.E. Crone, J. Parvizi, R.T. Knight, Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Hum. Neurosci. 4 (2010)

  • W. Wattanapanitch, M. Fee, R. Sarpeshkar, An Energy-Efficient Micropower Neural Recording Amplifier. Biomed. Circ. Syst. IEEE Trans. 1(2), 136–147 (2007)

    Article  Google Scholar 

  • J.D. Weiland, W.T. Liu, M.S. Humayun, Retinal prosthesis. Ann. Rev. Biomed. Eng. pp. 361–401. (2005)

  • K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke, K. Najafi, Wireless implantable microsystems: High-density electronic interfaces to the nervous system. P Ieee 92(1), 76–97 (2004)

    Article  Google Scholar 

  • K.D. Wise, A.M. Sodagar, Y. Yao, M.N. Gulari, G.E. Perlin, K. Najafi, Microelectrodes, microelectronics, and implantable neural microsystems. P Ieee 96(7), 1184–1202 (2008)

    Article  Google Scholar 

  • Y. Yao, M.N. Gulari, J.A. Wiler, K.D. Wise, A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications. J. Microelectromech S. 16(4), 977–988 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Ministry of Science and Technology, Taiwan, R.O.C. (under Contract Number:, MOST-103-2220-E-039-001 and MOST-103-2221-E-009-192-MY3), and I-RiCE Program: UST-UCSD International Center of Excellence in Advanced Bioengineering under Grant Number: NSC-102-2911-I-009-101, and Biomedical Electronics Translational Research Center “Aim for the Top University Plan” of the National Chiao Tung University and Ministry of Education, Taiwan, R.O.C. The authors would like to thank National Chip Implementation Center (CIC) and Advanced Semiconductor Engineering Group for chip fabrication and packaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chern Chiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CW., Chou, LC., Huang, PT. et al. A double-sided, single-chip integration scheme using through-silicon-via for neural sensing applications. Biomed Microdevices 17, 11 (2015). https://doi.org/10.1007/s10544-014-9906-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-014-9906-9

Keywords

Navigation