Skip to main content

Ultra-Low Power Application-Specific Integrated Circuits for Sensing

  • Chapter
  • First Online:
Implantable Sensors and Systems

Abstract

In the quest for ever-reducing system size and increased integration and functionality, application-specific integrated circuit (ASIC) technology plays a pivotal role in modern implants, where custom circuits designed at transistor and device levels are replacing off-the-shelf commercial chips and bulky benchtop systems. Recently, commercial system-on-chip (SoC) devices encompassing digital microcontrollers, radio, and analog–digital converters, as well as reconfigurable amplifier circuits, are widely available. Despite this, further development of ASIC -specific implantable systems is required, particularly in the area of multi-channel array sensor interfaces, ultra-low power data acquisition, and circuits that work with specialized micro-sensors for implants. ASICs designed to focus on a particular application have given designers the freedom to optimize power consumption for a set task, unlike general-purpose SoCs that have to cater for a wide range of applications and hence typically consume more power. In this chapter, we begin with a survey on the latest development of ASICs and related integrated systems from literature. This is followed by an overview of technological trends in integrated circuit/sensor fabrication and fusion. The rest of the chapter focuses on a number of engineering aspects related to ultra-low power ASIC circuits appropriate for implantable sensors and sensor front-ends, covering bioimpedance , neural and electrochemical sensor measurement circuits, as well as low-power analog-to-digital converter design and architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAP:

Axon action potentials

AC:

Alternating current

ACFB:

Autocorrelation feedback

ADC:

Analog-to-digital converter

AGC:

Automatic gain control

APS:

Active pixel sensors

ASIC:

Application specific integrated circuit

AZ:

Auto-zeroing

BIST:

Built-in self-test

BJT:

Bipolar junction transistor

BPF:

Bandpass filter

CDS:

Correlated double sampling

CHS:

Chopper stabilization

CMFB:

Common-mode feedback

CMOS:

Complementary metal-oxide semiconductor

CMRR:

Common-mode rejection ratio

CMS:

Correlated multiple sampling

CNS:

Central nervous systems

CORDIC:

Coordinate rotation digital computer

CS:

Compressed sensing

CTAT:

Complementary-to-absolute-temperature

CT ΔΣ:

Continuous-time ΔΣ-modulator

CV:

Cyclic voltammetry

DAC:

Digital-to-analog converter

DBS:

Deep brain stimulation

DC:

Direct current

DDA:

Differential difference amplifier

DDS:

Direct digital synthesizer

DNA:

Deoxyribonucleic acid

DSP:

Digital signal processing

DT ΔΣ:

Discrete-time ΔΣ-modulator

ECoG:

Electrocorticography

ECG:

Electrocardiography

EEG:

Electroencephalography

EIT:

Electrical impedance tomography

EMG:

Electromyography

EMI:

Electromagnetic interference

ENG:

Electroneurography

EOG:

Electrooculography

ESD:

Electrostatic discharge

FBVA:

Feedback voltage attenuation

FET:

Field-effect transistor

FFCA:

Feedforward current attenuation

FFVA:

Feedforward voltage attenuation

FGMOS:

Floating gate MOS

FIR:

Finite impulse response

FPAA:

Field-programmable analog array

FPGA:

Field-programmable gated array

FS:

Frequency span

FSCV:

Fast scan cyclic voltammetry

FSK:

Frequency shift keying

HD3:

Third order harmonic distortion

HPF:

High-pass filter

IA:

Instrumentation amplifier

IC:

Inversion coefficient

IF-ADC:

Integrate and fire ADC

IIR:

Infinite impulse response

KCL:

Kirchhoff’s current law

LFP:

Local field potential

LNA:

Low noise amplifier

LPF:

Low-pass filter

LSB:

Least significant bit

LUT:

Lookup table

MEMS:

Micro-electro-mechanical system

MOSFET:

Metal-oxide field effect transistor

MSB:

Most significant bit

NEF:

Noise efficiency factor

OOS:

Output offset storage

OSR:

Oversampling ratio

op-amp:

Operational amplifier

OTA:

Operational transconductance amplifier

PEF:

Power efficiency factor

PGA:

Programmable gain amplifier

PND:

P+ non-salicide diffusion

PNS:

Peripheral nervous systems

PSD:

Power spectral density

PSRR:

Power supply rejection ratio

PTAT:

Positive-to-absolute-temperature

PWV:

Pulse wave velocity

Q:

Quality factor

RMS:

Root-mean-square

ROM:

Read-only memory

S:

Slope

SAR:

Successive approximation register

SC:

Switched capacitor

SCCMOS:

Super cutoff CMOS

SD:

Synchronous detection

SFDR:

Spurious-free dynamic range

SNR:

Signal to noise ratio

SoC:

System-on-chip

TC:

Temperature coefficient

TCN:

Negative temperature coefficient

TCP:

Positive temperature coefficient

TDC:

Time-to-digital converter

TEM:

Time-encoding machine

THD:

Total harmonic distortion

TI:

Transimpedance

TIA:

Transimpedance amplifier

TSC:

Triangle-to-sine converter

TSV:

Through-silicon-vias

VCCS:

Voltage-controlled current source

VFC:

Voltage-to-frequency converter

VVR:

Voltage variable resistor

References

  1. C.M. Lopez et al., An implantable 455-active-Electrode 52-channel CMOS neural probe. IEEE J. Solid-State Circuits 49(1), 248–261 (2014)

    Article  Google Scholar 

  2. M. Yin, D.A. Borton, J. Aceros, W.R. Patterson, A.V. Nurmikko, A 100-channel hermetically sealed implantable device for chronic wireless neurosensing applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 115–128 (2013)

    Article  Google Scholar 

  3. P.T. Huang et al., 2.5D heterogeneously integrated microsystem for high-density neural sensing applications. IEEE Trans. Biomed. Circuits Syst. 8(6), 810–823 (2014)

    Article  Google Scholar 

  4. E.E. Aktakka, K. Najafi, A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J. Solid-State Circuits 49(9), 2017–2029 (2014)

    Article  Google Scholar 

  5. M. Bakhshiani, M.A. Suster, P. Mohseni, A broadband sensor interface IC for miniaturized dielectric spectroscopy from MHz to GHz. IEEE J. Solid-State Circuits 49(8), 1669–1681 (2014)

    Article  Google Scholar 

  6. S.S. Ghoreishizadeh, C. Baj-Rossi, A. Cavallini, S. Carrara, G.D. Micheli, An integrated control and readout circuit for implantable multi-target electrochemical biosensing. IEEE Trans. Biomed. Circuits Syst. 8(6), 891–898 (2014)

    Article  Google Scholar 

  7. Y.J. Huang et al., A self-powered CMOS reconfigurable multi-sensor SoC for biomedical applications. IEEE J. Solid-State Circuits 49(4), 851–866 (2014)

    Article  Google Scholar 

  8. M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)

    Article  Google Scholar 

  9. Y. Suo, J. Zhang, T. Xiong, P.S. Chin, R. Etienne-Cummings, T.D. Tran, Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(5), 648–659 (2014)

    Article  Google Scholar 

  10. H.G. Rhew, J. Jeong, J.A. Fredenburg, S. Dodani, P.G. Patil, M.P. Flynn, a fully self-contained logarithmic closed-loop deep brain stimulation SoC with wireless telemetry and wireless power management. IEEE J. Solid-State Circuits 49(10), 2213–2227 (2014)

    Article  Google Scholar 

  11. Y.J. Huang et al., A CMOS cantilever-based label-free DNA SoC with improved sensitivity for hepatitis B virus detection. IEEE Trans. Biomed. Circuits Syst. 7(6), 820–831 (2013)

    Article  Google Scholar 

  12. Y. Huang, Y. Liu, B.L. Hassler, R.M. Worden, A.J. Mason, A protein-based electrochemical biosensor array platform for integrated microsystems. IEEE Trans. Biomed. Circuits Syst. 7(1), 43–51 (2013)

    Article  Google Scholar 

  13. S.W. Chiu et al., A fully integrated nose-on-a-chip for rapid diagnosis of ventilator-associated pneumonia. IEEE Trans. Biomed. Circuits Syst. 8(6), 765–778 (2014)

    Article  Google Scholar 

  14. M. Haruta et al., An implantable CMOS device for blood-flow imaging during experiments on freely moving rats. Jpn. J. Appl. Phys. 53(4S), 04EL05 (2014)

    Google Scholar 

  15. T.H. Tsai, H.C. Tsai, T.K. Wu, A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations. IEEE Trans. Biomed. Circuits Syst. 8(5), 608–616 (2014)

    Article  Google Scholar 

  16. M. Yip, R. Jin, H.H. Nakajima, K.M. Stankovic, A.P. Chandrakasan, A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. IEEE J. Solid-State Circuits 50(1), 214–229 (2015)

    Article  Google Scholar 

  17. Y.K. Lo, K. Chen, P. Gad, W. Liu, A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses. IEEE Trans. Biomed. Circuits Syst. 7(6), 761–772 (2013)

    Article  Google Scholar 

  18. M. Monge et al., A fully intraocular high-density self-calibrating epiretinal prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(6), 747–760 (2013)

    Article  Google Scholar 

  19. S. Oh et al., Light-controlled biphasic current stimulator IC using CMOS image sensors for high-resolution retinal prosthesis and in vitro experimental results with rd1 mouse. IEEE Trans. Biomed. Eng. 62(1), 70–79 (2015)

    Article  Google Scholar 

  20. R.R. Harrison, C. Charles, A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)

    Article  Google Scholar 

  21. B. Gosselin, M. Sawan, C.A. Chapman, A low-power integrated bioamplifier with active low-frequency suppression. IEEE Trans. Biomed. Circuits Syst. 1(3), 184–192 (2007)

    Article  Google Scholar 

  22. A. Bagheri, M.T. Salam, J.L.P. Velazquez, R. Genov, Low-frequency noise and offset rejection in DC-coupled neural amplifiers: a review and digitally-assisted design tutorial. IEEE Trans. Biomed. Circuits Syst. 11(1), 161–176 (2017)

    Article  Google Scholar 

  23. X. Liu, A. Demosthenous, N. Donaldson, Platinum electrode noise in the ENG spectrum. Med. Biol. Eng. Comput. 46(10), 997–1003 (2008)

    Article  Google Scholar 

  24. H. Kassiri, K. Abdelhalim, R. Genov, Low-distortion super-GOhm subthreshold-MOS resistors for CMOS neural amplifiers, in 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS) (2013), pp. 270–273

    Google Scholar 

  25. R.F. Yazicioglu, P. Merken, R. Puers, C.V. Hoof, A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE J. Solid-State Circuits 42(5), 1100–1110 (2007)

    Article  Google Scholar 

  26. X. Zou, X. Xu, L. Yao, Y. Lian, A 1-V 450-nW fully integrated programmable biomedical sensor interface chip. IEEE J. Solid-State Circuits 44(4), 1067–1077 (2009)

    Article  Google Scholar 

  27. Y. Tseng, Y. Ho, S. Kao, C. Su, A 0.09 μW low power front-end biopotential amplifier for biosignal recording. IEEE Trans. Biomed. Circuits Syst. 6(5), 508–516 (2012)

    Article  Google Scholar 

  28. A. Demosthenous, I. Pachnis, D. Jiang, N. Donaldson, An integrated amplifier with passive neutralization of myoelectric interference from neural recording tripoles. IEEE Sens. J. 13(9), 3236–3248 (2013)

    Article  Google Scholar 

  29. L. Yan, J. Bae, S. Lee, T. Roh, K. Song, H.J. Yoo, A 3.9 mW 25-electrode reconfigured sensor for wearable cardiac monitoring system. IEEE J. Solid-State Circuits 46(1), 353–364 (2011)

    Article  Google Scholar 

  30. S. Hong et al., A 4.9 mOhm-sensitivity mobile electrical impedance tomography IC for early breast-cancer detection system. IEEE J. Solid-State Circuits 50(1), 245–257 (2015)

    Article  Google Scholar 

  31. S. Hong, J. Lee, J. Bae, H.J. Yoo, A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system. IEEE J. Solid-State Circuits 50(11), 2501–2512 (2015)

    Article  Google Scholar 

  32. R.F. Yazicioglu, S. Kim, T. Torfs, H. Kim, C.V. Hoof, A 30 μW analog signal processor asic for portable biopotential signal monitoring. IEEE J. Solid-State Circuits 46(1), 209–223 (2011)

    Article  Google Scholar 

  33. A. Demosthenous, Advances in microelectronics for implantable medical devices. Adv. Electron. 981295 (2014)

    Google Scholar 

  34. H. Chandrakumar D. Marković, A high dynamic-range neural recording chopper amplifier for simultaneous neural recording and stimulation. IEEE J. Solid-State Circuits 52(3), 645–656 (2017)

    Google Scholar 

  35. N.V. Helleputte, S. Kim, H. Kim, J.P. Kim, C.V. Hoof, R.F. Yazicioglu, A 160μA biopotential acquisition ic with fully integrated IA and motion artifact suppression. IEEE Trans. Biomed. Circuits Syst. 6(6), 552–561 (2012)

    Google Scholar 

  36. M.S.J. Steyaert, W.M.C. Sansen, A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid-State Circuits 22(6), 1163–1168 (1987)

    Article  Google Scholar 

  37. F. Zhang, J. Holleman, B.P. Otis, Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Trans. Biomed. Circuits Syst. 6(4), 344–355 (2012)

    Article  Google Scholar 

  38. K.A. Ng, E. Greenwald, Y.P. Xu, N.V. Thakor, Implantable neurotechnologies: a review of integrated circuit neural amplifiers. Med. Biol. Eng. Comput. 54(1), 45–62 (2016)

    Article  Google Scholar 

  39. W. Wattanapanitch, M. Fee, R. Sarpeshkar, An energy-efficient micropower neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 1(2), 136–147 (2007)

    Article  Google Scholar 

  40. T. Delbruck and C. A. Mead, Adaptive photoreceptor with wide dynamic range, in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS ’94) (1994), pp. 339–342

    Google Scholar 

  41. Z. Kárász, R. Fiáth, P. Földesy, Á.R. Vázquez, Tunable low noise amplifier implementation with low distortion pseudo-resistance for in vivo brain activity measurement. IEEE Sens. J. 14(5), 1357–1363 (2014)

    Article  Google Scholar 

  42. R.H. Olsson, D.L. Buhl, A.M. Sirota, G. Buzsaki, K.D. Wise, Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays. IEEE Trans. Biomed. Eng. 52(7), 1303–1311 (2005)

    Article  Google Scholar 

  43. M. Yin, M. Ghovanloo, A low-noise preamplifier with adjustable gain and bandwidth for biopotential recording applications, in 2007 IEEE International Symposium on Circuits and Systems (2007), pp. 321–324

    Google Scholar 

  44. H. Rezaee-Dehsorkh, N. Ravanshad, R. Lotfi, K. Mafinezhad, A.M. Sodagar, Analysis and design of tunable amplifiers for implantable neural recording applications. IEEE. J. Emerg. Sel. Top. Circuits Syst. 1(4), 546–556 (2011)

    Article  Google Scholar 

  45. R.H. Olsson, K.D. Wise, A three-dimensional neural recording microsystem with implantable data compression circuitry. IEEE J. Solid-State Circuits 40(12), 2796–2804 (2005)

    Article  Google Scholar 

  46. K. Abdelhalim, L. Kokarovtseva, J.L.P. Velazquez, R. Genov, 915-MHz FSK/OOK wireless neural recording SoC With 64 mixed-signal FIR filters. IEEE J. Solid-State Circuits 48(10), 2478–2493 (2013)

    Article  Google Scholar 

  47. N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, A.P. Chandrakasan, A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE J. Solid-State Circuits 45(4), 804–816 (2010)

    Article  Google Scholar 

  48. K.A. Ng, Y.P. Xu, A compact, low input capacitance neural recording amplifier. IEEE Trans. Biomed. Circuits Syst. 7(5), 610–620 (2013)

    Article  Google Scholar 

  49. V. Majidzadeh, A. Schmid, Y. Leblebici, Energy efficient low-noise neural recording amplifier with enhanced noise efficiency factor. IEEE Trans. Biomed. Circuits Syst. 5(3), 262–271 (2011)

    Article  Google Scholar 

  50. Z. Zhou, P.A. Warr, A high input impedance low noise integrated front-end amplifier for neural monitoring. IEEE Trans. Biomed. Circuits Syst. 10(6), 1079–1086 (2016)

    Article  Google Scholar 

  51. K.A. Ng, Y.P. Xu, A low-power, high CMRR neural amplifier system employing CMOS inverter-based OTAs With CMFB through supply rails. IEEE J. Solid-State Circuits 51(3), 724–737 (2016)

    Article  Google Scholar 

  52. R. Muller, S. Gambini, J.M. Rabaey, A 0.013 mm2, 5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J. Solid-State Circuits 47(1), 232–243 (2012)

    Article  Google Scholar 

  53. W. Biederman et al., A fully-integrated, miniaturized (0.125 mm2) 10.5 μW wireless neural sensor. IEEE J. Solid-State Circuits 48(4), 960–970 (2013)

    Article  Google Scholar 

  54. A.P. Brokaw, M.P. Timko, An improved monolithic instrumentation amplifier. IEEE J. Solid-State Circuits 10(6), 417–423 (1975)

    Article  Google Scholar 

  55. R. Martins, S. Selberherr, F.A. Vaz, A CMOS IC for portable EEG acquisition systems. IEEE Trans. Instrum. Meas. 47(5), 1191–1196 (1998)

    Article  Google Scholar 

  56. A. Worapishet, A. Demosthenous, X. Liu, A CMOS instrumentation amplifier with 90-dB CMRR at 2-MHz using capacitive neutralization: analysis, design considerations, and implementation. IEEE Trans. Circuits Syst. Regul. Pap. 58(4), 699–710 (2011)

    Article  MathSciNet  Google Scholar 

  57. Y.-Q. Zhao, A. Demosthenous, R.H. Bayford, A CMOS instrumentation amplifier for wideband bioimpedance spectroscopy systems, in 2006 IEEE International Symposium on Circuits and Systems (2006), p. 5082

    Google Scholar 

  58. P. Kassanos, I.F. Triantis, A. Demosthenous, A CMOS magnitude/phase measurement chip for impedance spectroscopy. IEEE Sens. J. 13(6), 2229–2236 (2013)

    Article  Google Scholar 

  59. P. Kassanos, L. Constantinou, I.F. Triantis, A. Demosthenous, An integrated analog readout for multi-frequency bioimpedance measurements. IEEE Sens. J. 14(8), 2792–2800 (2014)

    Article  Google Scholar 

  60. A. Yufera, A. Rueda, J.M. Munoz, R. Doldan, G. Leger, E.O. Rodriguez-Villegas, A tissue impedance measurement chip for myocardial ischemia detection. IEEE Trans. Circuits Syst. Regul. Pap. 52(12), 2620–2628 (2005)

    Article  Google Scholar 

  61. K. Song, U. Ha, S. Park, J. Bae, H.J. Yoo, An impedance and multi-wavelength near-infrared spectroscopy IC for non-invasive blood glucose estimation. IEEE J. Solid-State Circuits 50(4), 1025–1037 (2015)

    Article  Google Scholar 

  62. R.F. Yazicioglu, P. Merken, R. Puers, C.V. Hoof, A 200 μW eight-channel EEG acquisition ASIC for ambulatory EEG systems. IEEE J. Solid-State Circuits 43(12), 3025–3038 (2008)

    Article  Google Scholar 

  63. K. Song, U. Ha, J. Lee, K. Bong, H.J. Yoo, An 87-mA.min iontophoresis controller IC with dual-mode impedance sensor for patch-type transdermal drug delivery system. IEEE J. Solid-State Circuits 49(1), 167–178 (2014)

    Article  Google Scholar 

  64. J. Xu, B. Büsze, C.V. Hoof, K.A.A. Makinwa, R.F. Yazicioglu, A 15-channel digital active electrode system for multi-parameter biopotential measurement. IEEE J. Solid-State Circuits 50(9), 2090–2100 (2015)

    Article  Google Scholar 

  65. E. Sackinger, W. Guggenbuhl, A versatile building block: the CMOS differential difference amplifier. IEEE J. Solid-State Circuits 22(2), 287–294 (1987)

    Article  Google Scholar 

  66. K.A. Ng, P.K. Chan, A CMOS analog front-end IC for portable EEG/ECG monitoring applications. IEEE Trans. Circuits Syst. Regul. Pap. 52(11), 2335–2347 (2005)

    Article  Google Scholar 

  67. M. Guermandi, R. Cardu, E.F. Scarselli, R. Guerrieri, Active electrode IC for EEG and electrical impedance tomography with continuous monitoring of contact impedance. IEEE Trans. Biomed. Circuits Syst. 9(1), 21–33 (2015)

    Article  Google Scholar 

  68. H. Ko, T. Lee, J. H. Kim, J. Park, J.P. Kim, Ultralow-power bioimpedance IC with intermediate frequency shifting chopper. IEEE Trans. Circuits Syst. II Express Briefs 63(3), 259–263 (2016)

    Google Scholar 

  69. J. Kim, H. Ko, Reconfigurable multiparameter biosignal acquisition SoC for low power wearable platform. Sensors 16(12), 2002 (2016)

    Article  Google Scholar 

  70. J. Wu, G.K. Fedder, L.R. Carley, A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer. IEEE J. Solid-State Circuits 39(5), 722–730 (2004)

    Article  Google Scholar 

  71. H. Alzaher, M. Ismail, A CMOS fully balanced differential difference amplifier and its applications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48(6), 614–620 (2001)

    Article  Google Scholar 

  72. P.K. Chan, J. Cui, Design of chopper-stabilized amplifiers with reduced offset for sensor applications. IEEE Sens. J. 8(12), 1968–1980 (2008)

    Article  Google Scholar 

  73. J.F. Duque-Carrillo, G. Torelli, R. Perez-Aloe, J.M. Valverde, F. Maloberti, Fully differential basic building blocks based on fully differential difference amplifiers with unity-gain difference feedback. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 42(3), 190–192 (1995)

    Article  Google Scholar 

  74. F. Witte, K.A.A. Makinwa, J. Huijsing, Dynamic Offset Compensated CMOS Amplifiers (Springer Science & Business Media, Berlin, 2009)

    Google Scholar 

  75. M.J.M. Pelgrom, A.C.J. Duinmaijer, A.P.G. Welbers, Matching properties of MOS transistors. IEEE J. Solid-State Circuits 24(5), 1433–1439 (1989)

    Article  Google Scholar 

  76. P.R. Kinget, Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid-State Circuits 40(6), 1212–1224 (2005)

    Article  Google Scholar 

  77. C.C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  78. A. Agnes, A. Cabrini, F. Maloberti, G. Martini, Cancellation of amplifier offset and 1/f noise: an improved chopper stabilized technique. IEEE Trans. Circuits Syst. II Express Briefs 54(6), 469–473 (2007)

    Article  Google Scholar 

  79. M.A.T. Sanduleanu, A.J.M.V. Tuijl, R.F. Wassenaar, M.C. Lammers, H. Wallinga, A low noise, low residual offset, chopped amplifier for mixed level applications, in 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196) (1998), pp. 333–336

    Google Scholar 

  80. H.M. Jafari, R. Genov, Chopper-stabilized bidirectional current acquisition circuits for electrochemical amperometric biosensors. IEEE Trans. Circuits Syst. Regul. Pap. 60(5), 1149–1157 (2013)

    Article  MathSciNet  Google Scholar 

  81. H.M. Jafari, K. Abdelhalim, L. Soleymani, E.H. Sargent, S.O. Kelley, R. Genov, Nanostructured CMOS wireless ultra-wideband label-free PCR-free DNA analysis SoC. IEEE J. Solid-State Circuits 49(5), 1223–1241 (2014)

    Article  Google Scholar 

  82. J. Xu, R.F. Yazicioglu, B. Grundlehner, P. Harpe, K.A.A. Makinwa, C.V. Hoof, A 160 μW 8-channel active electrode system for EEG monitoring. IEEE Trans. Biomed. Circuits Syst. 5(6), 555–567 (2011)

    Article  Google Scholar 

  83. Y. Hu, M. Sawan, CMOS front-end amplifier dedicated to monitor very low amplitude signal from implantable sensors. Analog Integr. Circuits Signal Process. 33(1), 29–41 (2002)

    Article  Google Scholar 

  84. R. Chebli, M. Sawan, Low noise and high CMRR front-end amplifier dedicated to portable EEG acquisition system, in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2013), pp. 2523–2526

    Google Scholar 

  85. C. Enz, A. Boukhayma, Recent trends in low-frequency noise reduction techniques for integrated circuits, in 2015 International Conference on Noise and Fluctuations (ICNF) (2015), pp. 1–6

    Google Scholar 

  86. C. Menolfi, Q. Huang, A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE J. Solid-State Circuits 32(7), 968–976 (1997)

    Article  Google Scholar 

  87. C.C. Enz, E.A. Vittoz, F. Krummenacher, A CMOS chopper amplifier. IEEE J. Solid-State Circuits 22(3), 335–342 (1987)

    Article  Google Scholar 

  88. C. Menolfi, Q. Huang, A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset. IEEE J. Solid-State Circuits 34(3), 415–420 (1999)

    Article  Google Scholar 

  89. A. Bakker, K. Thiele, J.H. Huijsing, A CMOS nested-chopper instrumentation amplifier with 100-nV offset. IEEE J. Solid-State Circuits 35(12), 1877–1883 (2000)

    Article  Google Scholar 

  90. J. Xu, Q. Fan, J.H. Huijsing, C.V. Hoof, R.F. Yazicioglu, K.A.A. Makinwa, Measurement and analysis of current noise in chopper amplifiers. IEEE J. Solid-State Circuits 48(7), 1575–1584 (2013)

    Article  Google Scholar 

  91. M.A.P. Pertijs, A. Niederkorn, X. Ma, B. McKillop, A. Bakker, J.H. Huijsing, A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.5 ℃ from –50 ℃ to 120 ℃. IEEE J. Solid-State Circuits 40(2), 454–461 (2005)

    Google Scholar 

  92. R. Wu, K.A.A. Makinwa, J.H. Huijsing, A Chopper Current-Feedback Instrumentation Amplifier With a 1 mHz Noise Corner and an AC-Coupled Ripple Reduction Loop. IEEE J. Solid-State Circuits 44(12), 3232–3243 (2009)

    Article  Google Scholar 

  93. A. Bakker, J.H. Huijsing, A CMOS chopper opamp with integrated low-pass filter, in Proceedings of the 23rd European Solid-State Circuits Conference (1997), pp. 200–203

    Google Scholar 

  94. R. Burt, J. Zhang, A Micropower Chopper-Stabilized Operational Amplifier Using a SC Notch Filter With Synchronous Integration Inside the Continuous-Time Signal Path. IEEE J. Solid-State Circuits 41(12), 2729–2736 (2006)

    Article  Google Scholar 

  95. Q. Fan, F. Sebastiano, J.H. Huijsing, K.A.A. Makinwa, A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE J. Solid-State Circuits 46(7), 1534–1543 (2011)

    Google Scholar 

  96. Y. Kusuda, Auto correction feedback for ripple suppression in a chopper amplifier. IEEE J. Solid-State Circuits 45(8), 1436–1445 (2010)

    Article  Google Scholar 

  97. H. Chandrakumar, D. Marković, A simple area-efficient ripple-rejection technique for chopped biosignal amplifiers. IEEE Trans. Circuits Syst. II Express Briefs 62(2), 189–193 (2015)

    Article  Google Scholar 

  98. T. Denison, K. Consoer, W. Santa, A.T. Avestruz, J. Cooley, A. Kelly, A 2 μW 100 nV/√Hz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J. Solid-State Circuits 42(12), 2934–2945 (2007)

    Google Scholar 

  99. P. Cong, N. Chaimanonart, W.H. Ko, D.J. Young, A wireless and batteryless 10-Bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring. IEEE J. Solid-State Circuits 44(12), 3631–3644 (2009)

    Article  Google Scholar 

  100. C.-G. Yu, R.L. Geiger, An automatic offset compensation scheme with ping-pong control for CMOS operational amplifiers. IEEE J. Solid-State Circuits 29(5), 601–610 (1994)

    Article  Google Scholar 

  101. N. Yazdi, H. Kulah, K. Najafi, Precision readout circuits for capacitive microaccelerometers, in Proceedings of IEEE Sensors (2004), pp. 28–31

    Google Scholar 

  102. W. Bracke, P. Merken, R. Puers, C.V. Hoof, Ultra-low-power interface chip for autonomous capacitive sensor systems. IEEE Trans. Circuits Syst. Regul. Pap. 54(1), 130–140 (2007)

    Article  Google Scholar 

  103. Y.-C. Hung, B.-D. Liu, A 1 V CMOS analog comparator using auto-zero and complementary differential-input technique, in Proceedings. IEEE Asia-Pacific Conference on ASIC (2002), pp. 181–184

    Google Scholar 

  104. L.H.C. Ferreira, T.C. Pimenta, R.L. Moreno, An auto-zero sample-and-hold circuit in 0.8 μm CMOS, in 5th International Conference on ASIC (2003), pp. 510–513

    Google Scholar 

  105. R. Assaad, J. Silva-Martinez, Optimisation of direct auto-zeroing offset cancellation in low voltage applications using dual level CMFB. Electron. Lett. 45(16), 809–811 (2009)

    Article  Google Scholar 

  106. V. Srinivasan, G.J. Serrano, J. Gray, P. Hasler, A precision CMOS amplifier using floating-gate transistors for offset cancellation. IEEE J. Solid-State Circuits 42(2), 280–291 (2007)

    Article  Google Scholar 

  107. H.P. Forghani-Zadeh, G.A. Rincon-Mora, A programmable 210-μV offset rail-to-rail Gm-C filter. IEEE Trans. Circuits Syst. Regul. Pap. 54(8), 1636–1646 (2007)

    Article  Google Scholar 

  108. M.A.P. Pertijs, W.J. Kindt, A 140 dB-CMRR current-feedback instrumentation amplifier employing ping-pong auto-zeroing and chopping. IEEE J. Solid-State Circuits 45(10), 2044–2056 (2010)

    Article  Google Scholar 

  109. I.E. Opris, G.T.A. Kovacs, A rail-to-rail ping-pong op-amp. IEEE J. Solid-State Circuits 31(9), 1320–1324 (1996)

    Article  Google Scholar 

  110. M.C.W. Coln, Chopper stabilization of MOS operational amplifiers using feed-forward techniques. IEEE J. Solid-State Circuits 16(6), 745–748 (1981)

    Article  Google Scholar 

  111. I.G. Finvers, J.W. Haslett, F.N. Trofimenkoff, A high temperature precision amplifier. IEEE J. Solid-State Circuits 30(2), 120–128 (1995)

    Article  Google Scholar 

  112. B. Linares-Barranco, T. Serrano-Gotarredona, On the design and characterization of femtoampere current-mode circuits. IEEE J. Solid-State Circuits 38(8), 1353–1363 (2003)

    Article  Google Scholar 

  113. M. O’Halloran, R. Sarpeshkar, A 10-nW 12-bit accurate analog storage cell with 10-aA leakage. IEEE J. Solid-State Circuits 39(11), 1985–1996 (2004)

    Article  Google Scholar 

  114. K.B. Mirza, S. Luan, A. Eftekhar, T.G. Constandinou, Towards a fully-integrated solution for capacitor-based neural stimulation, in 2012 IEEE International Symposium on Circuits and Systems (2012), pp. 2243–2246

    Google Scholar 

  115. K. Ishida, K. Kanda, A. Tamtrakarn, H. Kawaguchi, T. Sakurai, Managing subthreshold leakage in charge-based analog circuits with low-VTH transistors by analog T- switch (AT-switch) and super cut-off CMOS (SCCMOS). IEEE J. Solid-State Circuits 41(4), 859–867 (2006)

    Article  Google Scholar 

  116. C. Mayr et al., A biological-realtime neuromorphic system in 28 nm cmos using low-leakage switched capacitor circuits. IEEE Trans. Biomed. Circuits Syst. 10(1), 243–254 (2016)

    Article  Google Scholar 

  117. M. Waltari, K. Halonen, Bootstrapped switch without bulk effect in standard CMOS technology. Electron. Lett. 38(12), 555–557 (2002)

    Article  Google Scholar 

  118. J. Steensgaard, Bootstrapped low-voltage analog switches, in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems 1999 (ISCAS ’99) (1999), pp. 29–32

    Google Scholar 

  119. C. Lillebrekke, C. Wulff, T. Ytterdal, Bootstrapped switch in low-voltage digital 90 nm CMOS technology, in 2005 NORCHIP (2005), pp. 234–236

    Google Scholar 

  120. A.M. Abo, P.R. Gray, A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-digital converter. IEEE J. Solid-State Circuits 34(5), 599–606 (1999)

    Article  Google Scholar 

  121. D. Aksin, M. Al-Shyoukh, F. Maloberti, Switch bootstrapping for precise sampling beyond supply voltage. IEEE J. Solid-State Circuits 41(8), 1938–1943 (2006)

    Article  Google Scholar 

  122. C.J.B. Fayomi, G.W. Roberts, M. Sawan, Low-voltage CMOS analog bootstrapped switch for sample-and-hold circuit: design and chip characterization, in 2005 IEEE International Symposium on Circuits and Systems (2005), pp. 2200–2203

    Google Scholar 

  123. T. Deliyannis, Y. Sun, J.K. Fidler, Continuous-Time Active Filter Design (CRC Press, Boca Raton, Fla, 1998)

    Book  Google Scholar 

  124. Y. Sun (ed.), Design of High Frequency Integrated Analogue Filters (First Edition edition. London, Institution of Engineering and Technology, 2002)

    Google Scholar 

  125. R.L. Geiger, E. Sánchez-Sinencio, Active filter design using operational transconductance amplifiers: a tutorial. IEEE Circuits Devices Mag. 1(2), 20–32 (1985)

    Article  Google Scholar 

  126. J.C. Voghell, M. Sawan, Current tuneable CMOS transconductor for filtering applications, in 2000 IEEE International Symposium on Circuits and Systems 2000. ISCAS 2000 Geneva (2000), pp. 165–168

    Google Scholar 

  127. H. Khorramabadi, P.R. Gray, High-frequency CMOS continuous-time filters. IEEE J. Solid-State Circuits 19(6), 939–948 (1984)

    Article  Google Scholar 

  128. A. Kaiser, A micropower CMOS continuous-time low-pass filter. IEEE J. Solid-State Circuits 24(3), 736–743 (1989)

    Article  Google Scholar 

  129. P. Wu, R. Schaumann, Design of a 1-GHz self-resonance integrated GaAs gyrator-C inductor, in Proceedings of the 33rd Midwest Symposium on Circuits and Systems (1990), pp. 362–365

    Google Scholar 

  130. R. Sarpeshkar, Ultra Low Power Bioelectronics: Fundamentals, Biomedical Applications, and Bio-Inspired Systems (Cambridge University Press, Cambridge, 2010

    Google Scholar 

  131. P. Crombez, J. Craninckx, M. Steyaert, A linearity and power efficient design strategy for architecture optimization of gm-C biquadratic filters, in Research in Microelectronics and Electronics Conference. PRIME 2007 (2007), pp. 229–232

    Google Scholar 

  132. E. Lebel, A. Assi, M. Sawan, Programmable monolithic Gm-C band-pass filter: design and experimental results. Analog Integr. Circuits Signal Process. 54(1), 21–29 (2007)

    Article  Google Scholar 

  133. J. Silva-Martinez, J. Adut, J.M. Rocha-Perez, M. Robinson, S. Rokhsaz, A 60-mW 200-MHz continuous-time seventh-order linear phase filter with on-chip automatic tuning system. IEEE J. Solid-State Circuits 38(2), 216–225 (2003)

    Article  Google Scholar 

  134. Y. Li, H. Yu, L. Jiang, Z. Ji, Design of low power CMOS band-pass Gm-C filter for 5.8 GHz RF transceiver of ETC system, in 2010 12th IEEE International Conference on Communication Technology (ICCT) (2010), pp. 1410–1413

    Google Scholar 

  135. P. Crombez, J. Craninckx, P. Wambacq, M. Steyaert, A 100-kHz to 20-MHz reconfigurable power-linearity optimized Gm-C biquad in 0.13-μm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 55(3), 224–228 (2008)

    Google Scholar 

  136. A.S. Sedra, K.C. Smith, Microelectronic Circuits: International edition, 6th edn. (OUP USA, New York, 2010)

    Google Scholar 

  137. C. Toumazou, F. J. Lidgey, D.G. Haigh, Analogue IC Design: the Current-Mode Approach, New Ed edition. The Institution of Engineering and Technology (1990)

    Google Scholar 

  138. B. Razavi, Design of Analog Cmos Integrated Circuit, International edition (McGraw-Hill Higher Education, New York, 2003)

    Google Scholar 

  139. E. Sanchez-Sinencio, J. Silva-Martinez, CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc. Circuits Devices Syst. 147(1), 3–12 (2000)

    Article  Google Scholar 

  140. Y. Tsividis, Z. Czarnul, S.C. Fang, MOS transconductors and integrators with high linearity. Electron. Lett. 22(5), 245–246 (1986)

    Article  Google Scholar 

  141. Z. Czarnul, Y. Tsividis, Independent tuning of quality factor and unity-gain frequency in a transconductance-capacitance integrator. Electron. Lett. 22(19), 1026–1027 (1986)

    Article  Google Scholar 

  142. F. Krummenacher, N. Joehl, A 4-MHz CMOS continuous-time filter with on-chip automatic tuning. IEEE J. Solid-State Circuits 23(3), 750–758 (1988)

    Article  Google Scholar 

  143. D.A. Johns, K. Martin, Analog Integrated Circuit Design (Wiley, New York, 1996)

    MATH  Google Scholar 

  144. A. Lewinski, J. Silva-Martinez, OTA linearity enhancement technique for high frequency applications with IM3 below −65 dB. IEEE Trans. Circuits Syst. II Express Briefs 51(10), 542–548 (2004)

    Article  Google Scholar 

  145. A. Nedungadi, T. Viswanathan, Design of linear CMOS transconductance elements. IEEE Trans. Circuits Syst. 31(10), 891–894 (1984)

    Article  Google Scholar 

  146. R. van Langevelde, F.M. Klaassen, Effect of gate-field dependent mobility degradation on distortion analysis in MOSFETs. IEEE Trans. Electron Devices 44(11), 2044–2052 (1997)

    Article  Google Scholar 

  147. P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design (Oxford University Press, Oxford, 2002

    Google Scholar 

  148. K.-C. Kuo, A. Leuciuc, A linear MOS transconductor using source degeneration and adaptive biasing. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 48(10), 937–943 (2001)

    Article  Google Scholar 

  149. S. Solis-Bustos, J. Silva-Martinez, F. Maloberti, E. Sanchez-Sinencio, A 60-dB dynamic-range CMOS sixth-order 2.4-Hz low-pass filter for medical applications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(12), 1391–1398 (2000)

    Article  Google Scholar 

  150. J. Silva-Martinez, S. Solis-Bustos, Design considerations for high performance very low frequency filters, in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999 (ISCAS ’99) (1999), pp. 648–651

    Google Scholar 

  151. J. Silva-Martinez, J. Salcedo-Suñer, IC voltage to current transducers with very small transconductance. Analog Integr. Circuits Signal Process. 13(3), 285–293 (1997)

    Article  Google Scholar 

  152. A. Veeravalli, E. Sanchez-Sinencio, J. Silva-Martinez, Transconductance amplifier structures with very small transconductances: a comparative design approach. IEEE J. Solid-State Circuits 37(6), 770–775 (2002)

    Article  Google Scholar 

  153. S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, R. Douglas, Analog VLSI: Circuits and Principles (MIT Press, Cambridge, Mass, 2002)

    Google Scholar 

  154. A. Wang, B.H. Calhoun, A.P. Chandrakasan, Sub-threshold Design for Ultra Low-Power Systems, Softcover reprint of hardcover 1st ed. 2006 edition (Springer, New York, 2009

    Google Scholar 

  155. P.M. Furth, On the design of optimal continuous-time filter banks in subthreshold CMOS, in PhD Thesis, John Hopkins, Baltimore, MA (1996)

    Google Scholar 

  156. C. Mead, Analogue and Neural Very Large Scale Integration Systems (Addison Wesley, Reading, Mass, 1989)

    Google Scholar 

  157. P.M. Furth, A.G. Andreou, Linearised differential transconductors in subthreshold CMOS. Electron. Lett. 31(7), 545–547 (1995)

    Article  Google Scholar 

  158. P. Kassanos, I.F. Triantis, A CMOS multi-sine signal generator for multi-frequency bioimpedance measurements, in 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (2014), pp. 249–252

    Google Scholar 

  159. P. Georgiou, C. Toumazou, ISFET characteristics in CMOS and their application to weak inversion operation. Sens. Actuators B Chem. 143(1), 211–217 (2009)

    Article  Google Scholar 

  160. D. Binkley, Tradeoffs and Optimization in Analog CMOS Design (Wiley, Chichester, West Sussex, UK, 2008)

    Book  Google Scholar 

  161. A.J. Casson, E. Rodriguez-Villegas, A 60 pW gmC continuous wavelet transform circuit for portable EEG systems. IEEE J. Solid-State Circuits 46(6), 1406–1415 (2011)

    Article  Google Scholar 

  162. L. Watts, D.A. Kerns, R.F. Lyon, C.A. Mead, Improved implementation of the silicon cochlea. IEEE J. Solid-State Circuits 27(5), 692–700 (1992)

    Article  Google Scholar 

  163. M. Ismail, T. Fiez, Analog VLSI: Signal and Information Processing (McGraw-Hill Education, 1994)

    Google Scholar 

  164. K. Bult, G.J.G.M. Geelen, An inherently linear and compact MOST-only current division technique. IEEE J. Solid-State Circuits 27(12), 1730–1735 (1992)

    Article  Google Scholar 

  165. H. Tanimoto, M. Koyama, Y. Yoshida, Realization of a 1-V active filter using a linearization technique employing plurality of emitter-coupled pairs. IEEE J. Solid-State Circuits 26(7), 937–945 (1991)

    Article  Google Scholar 

  166. B. Gilbert, The multi-tanh principle: a tutorial overview. IEEE J. Solid-State Circuits 33(1), 2–17 (1998)

    Article  Google Scholar 

  167. K. Kimura, The ultra-multi-tanh technique for bipolar linear transconductance amplifiers. IEEE Trans Circuits Syst. Fundam. Theory Appl. 44(4), 288–302 (1997)

    Article  Google Scholar 

  168. E. Rodriguez-Villegas, A.J. Casson, P. Corbishley, A subhertz nanopower low-pass filter. IEEE Trans. Circuits Syst. II Express Briefs 58(6), 351–355 (2011)

    Article  Google Scholar 

  169. P. Corbishley, E. Rodriguez-Villegas, A nanopower bandpass filter for detection of an acoustic signal in a wearable breathing detector. IEEE Trans. Biomed. Circuits Syst. 1(3), 163–171 (2007)

    Article  Google Scholar 

  170. P.M. Furth, H.A. Ommani, Low-voltage highly-linear transconductor design in subthreshold CMOS, in Proceedings of the 40th Midwest Symposium on Circuits and Systems 1997 (1997), pp. 156–159

    Google Scholar 

  171. A.G. Katsiamis, E.M. Drakakis, R.F. Lyon, A biomimetic, 4.5 μW, 120 + dB, log-domain cochlea channel with AGC. IEEE J. Solid-State Circuits 44(3), 1006–1022 (2009)

    Article  Google Scholar 

  172. T. Delbruck, ‘Bump’ circuits for computing similarity and dissimilarity of analog voltages, in IJCNN-91-Seattle International Joint Conference on Neural Networks (1991), pp. 475–479

    Google Scholar 

  173. M.H. Cohen, A.C. Andreou, MOS circuit for nonlinear Hebbian learning. Electron. Lett. 28(6), 591–593 (1992)

    Article  Google Scholar 

  174. A. Pesavento and C. Koch, A wide linear range four quadrant multiplier in subthreshold CMOS, in Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS ’99) (1999), pp. 240–243

    Google Scholar 

  175. M.W. Baker, R. Sarpeshkar, Low-power single-loop and dual-loop AGCs for bionic ears. IEEE J. Solid-State Circuits 41(9), 1983–1996 (2006)

    Article  Google Scholar 

  176. P. Georgiou, C. Toumazou, Towards an ultra low power chemically inspired electronic beta cell for diabetes, in 2006 IEEE International Symposium on Circuits and Systems (2006), pp. 173–176

    Google Scholar 

  177. K.H. Wee, R. Sarpeshkar, An electronically tunable linear or nonlinear MOS resistor. IEEE Trans. Circuits Syst. Regul. Pap. 55(9), 2573–2583 (2008)

    Article  MathSciNet  Google Scholar 

  178. Y. Hu, Y. Liu, T.G. Constandinou, C. Toumazou, A 5 s-time-constant temperature-stable integrator for a tuneable PID controller in LOC applications, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011), pp. 1387–1390

    Google Scholar 

  179. B. Rumberg, D.W. Graham, A low-power and high-precision programmable analog filter bank. IEEE Trans. Circuits Syst. II Express Briefs 59(4), 234–238 (2012)

    Article  Google Scholar 

  180. B. Gosselin, M. Sawan, An ultra low-power CMOS automatic action potential detector. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 346–353 (2009)

    Article  Google Scholar 

  181. B. Gosselin, M. Sawan, E. Kerherve, Linear-phase delay filters for ultra-low-power signal processing in neural recording implants. IEEE Trans. Biomed. Circuits Syst. 4(3), 171–180 (2010)

    Article  Google Scholar 

  182. R. Sarpeshkar, R.F. Lyon, C. Mead, A low-power wide-linear-range transconductance amplifier. Analog Integr. Circuits Signal Process. 13(1–2), 123–151 (1997)

    Article  Google Scholar 

  183. T. Delbruck, Bump circuits for comparing similarity and dissimilarity of analog voltages. California Institute Of Technology, Pasadena, California, Memo 26, May 1993

    Google Scholar 

  184. A.E. Mourabit, G.-N. Lu, P. Pittet, Wide-linear-range subthreshold OTA for low-power, low-voltage, and low-frequency applications. IEEE Trans. Circuits Syst. Regul. Pap. 52(8), 1481–1488 (2005)

    Article  Google Scholar 

  185. J. Chen, E. Sanchez-Sinencio, J. Silva-Martinez, Frequency-dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Trans. Circuits Syst. Regul. Pap. 53(3), 499–510 (2006)

    Article  Google Scholar 

  186. R. Chawla, F. Adil, G. Serrano, P.E. Hasler, Programmable Gm–C filters using floating-gate operational transconductance amplifiers. IEEE Trans. Circuits Syst. Regul. Pap. 54(3), 481–491 (2007)

    Article  Google Scholar 

  187. E. Rodriguez-Villegas, H. Barnes, Solution to trapped charge in FGMOS transistors. Electron. Lett. 39(19), 1416–1417 (2003)

    Article  Google Scholar 

  188. E. Rodriguez-Villegas, M. Jimenez, R.G. Carvajal, On dealing with the charge trapped in floating-gate MOS (FGMOS) transistors. IEEE Trans. Circuits Syst. II Express Briefs 54(2), 156–160 (2007)

    Article  Google Scholar 

  189. E. Rodriguez-Villegas, Low Power and Low Voltage Circuit Design with the FGMOS Transistor (Institution of Engineering and Technology, Stevenage, 2006)

    Book  Google Scholar 

  190. L. Zuo, S.K. Islam, Low-voltage bulk-driven operational amplifier with improved transconductance. IEEE Trans. Circuits Syst. Regul. Pap. 60(8), 2084–2091 (2013)

    Article  Google Scholar 

  191. J.M. Carrillo, G. Torelli, R.P.-A. Valverde, J.F. Duque-Carrillo, 1-V rail-to-rail CMOS OpAmp with improved bulk-driven input stage. IEEE J. Solid-State Circuits 42(3), 508–517 (2007)

    Article  Google Scholar 

  192. J.M. Carrillo, G. Torelli, J.F. Duque-Carrillo, Transconductance enhancement in bulk-driven input stages and its applications. Analog Integr. Circuits Signal Process. 68(2), 207–217 (2011)

    Article  Google Scholar 

  193. J.M. Carrillo, G. Torelli, M.A. Domínguez, J.F. Duque-Carrillo, On the input common-mode voltage range of CMOS bulk-driven input stages. Int. J. Circuit Theory Appl. 39(6), 649–664 (2011)

    Article  Google Scholar 

  194. P. Kinget, M. Steyaert, J. van der Spiegel, Full analog CMOS integration of very large time constants for synaptic transfer in neural networks. Analog Integr. Circuits Signal Process. 2(4), 281–295 (1992)

    Article  Google Scholar 

  195. A. Arnaud, R. Fiorelli, and C. Galup-Montoro, On the design of very small transconductance otas with reduced input offset, in 2005 18th Symposium on Integrated Circuits and Systems Design (2005), pp. 15–20

    Google Scholar 

  196. C. Galup-Montoro, M.C. Schneider, I.J.B. Loss, Series-parallel association of FET’s for high gain and high frequency applications. IEEE J. Solid-State Circuits 29(9), 1094–1101 (1994)

    Article  Google Scholar 

  197. M. Steyaert, P. Kinget, W. Sansen, Full integration of extremely large time constants in CMOS. Electron. Lett. 27(10), 790–791 (1991)

    Article  Google Scholar 

  198. A. Arnaud, C. Galup-Montoro, Pico-A/V range CMOS transconductors using series-parallel current division. Electron. Lett. 39(18), 1295–1296 (2003)

    Article  Google Scholar 

  199. A. Arnaud, R. Fiorelli, C. Galup-Montoro, Nanowatt, Sub-nS OTAs, with Sub-10-mV input offset, using series-parallel current mirrors. IEEE J. Solid-State Circuits 41(9), 2009–2018 (2006)

    Article  Google Scholar 

  200. R. Fiorelli, A. Arnaud, C. Galup-Montoro, Series-parallel association of transistors for the reduction of random offset in non-unity gain current mirrors, in Proceedings of the 2004 International Symposium on Circuits and Systems, 2004 (ISCAS ’04) (2004), pp. 881-884

    Google Scholar 

  201. C.C. Enz, E.A. Vittoz, CMOS low-power analog circuit design. Design. Low Power Digital Syst. Emerg. Technol. 1996, 79–133 (1996)

    Article  Google Scholar 

  202. B. Pankiewicz, M. Wojcikowski, S. Szczepanski, Y. Sun, A field programmable analog array for CMOS continuous-time OTA-C filter applications. IEEE J. Solid-State Circuits 37(2), 125–136 (2002)

    Article  Google Scholar 

  203. J. Ramirez-Angulo, S.R.S. Garimella, A.J. Lopez-Martin, R.G. Carvajal, Gain programmable current mirrors based on current steering. Electron. Lett. 42(10), 559–560 (2006)

    Article  Google Scholar 

  204. A.J. Lopez-Martin, J. Ramirez-Angulo, C. Durbha, R.G. Carvajal, A CMOS transconductor with multidecade tuning using balanced current scaling in moderate inversion. IEEE J. Solid-State Circuits 40(5), 1078–1083 (2005)

    Article  Google Scholar 

  205. A.J. Lopez-Martin, J. Ramirez-Angulo, C. Durbha, R.G. Carvajal, Highly linear programmable balanced current scaling technique in moderate inversion. IEEE Trans. Circuits Syst. II Express Briefs 53(4), 283–285 (2006)

    Article  Google Scholar 

  206. Y. Tsividis, K. Suyama, K. Vavelidis, Simple ‘reconciliation’ MOSFET model valid in all regions. Electron. Lett. 31(6), 506–508 (1995)

    Article  Google Scholar 

  207. A.J. Lopez-Martin, J. Ramirez-Angulo, R.G. Carvajal, L. Acosta, CMOS transconductors with continuous tuning using FGMOS balanced output current scaling. IEEE J. Solid-State Circuits 43(5), 1313–1323 (2008)

    Article  Google Scholar 

  208. J. Silva-Martinez, M.S.J. Steyaert, W. Sansen, Design techniques for high-performance full-CMOS OTA-RC continuous-time filters. IEEE J. Solid-State Circuits 27(7), 993–1001 (1992)

    Article  Google Scholar 

  209. M. Banu, J.M. Khoury, Y. Tsividis, Fully differential operational amplifiers with accurate output balancing. IEEE J. Solid-State Circuits 23(6), 1410–1414 (1988)

    Article  Google Scholar 

  210. P. Wu, R. Schaumann, P. Latham, Design considerations for common-mode feedback circuits in fully-differential operational transconductance amplifiers with tuning, in IEEE International Symposium on Circuits and Systems 1991 (1991), pp. 1363–136

    Google Scholar 

  211. J.F. Duque-Carrillo, Control of the common-mode component in CMOS continuous-time fully differential signal processing. Analog Integr. Circuits Signal Process. 4(2), 131–140 (1993)

    Article  Google Scholar 

  212. J.N. Babanezhad, A low-output-impedance fully differential op amp with large output swing and continuous-time common-mode feedback. IEEE J. Solid-State Circuits 26(12), 1825–1833 (1991)

    Article  Google Scholar 

  213. P.M. VanPeteghem, J.F. Duque-Carrillo, A general description of common-mode feedback in fully-differential amplifiers, in IEEE International Symposium on Circuits and Systems (1990), pp. 320–312

    Google Scholar 

  214. L. Lah, J. Choma, J. Draper, A continuous-time common-mode feedback circuit (CMFB) for high-impedance current-mode applications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(4), 363–369 (2000)

    Article  Google Scholar 

  215. W. Yan, H. Zimmermann, Continuous-time common-mode feedback circuit for applications with large output swing and high output impedance, in 11th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, 2008 (DDECS 2008) (2008), pp. 1–5

    Google Scholar 

  216. M. Maymandi-Nejad, M. Sachdev, Continuous time common mode feedback technique for sub 1 V analogue circuits. Electron. Lett. 38(23), 1408–1409 (2002)

    Article  Google Scholar 

  217. J. Silva-Martinez, A. Vazquez-Gonzalez, Impedance scalers for IC active filters, in Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998 (ISCAS ’98) (1998), pp. 151–154

    Google Scholar 

  218. G. Doménech-Asensi et al., Low-frequency CMOS bandpass filter for PIR sensors in wireless sensor nodes. IEEE Sens. J. 14(11), 4085–4094 (2014)

    Article  Google Scholar 

  219. Y. Li, C.C.Y. Poon, Y.T. Zhang, Analog integrated circuits design for processing physiological signals. IEEE Rev. Biomed. Eng. 3, 93–105 (2010)

    Article  Google Scholar 

  220. W. Lee, S. Cho, Integrated all electrical pulse wave velocity and respiration sensors using bio-impedance. IEEE J. Solid-State Circuits 50(3), 776–785 (2015)

    Article  Google Scholar 

  221. L. Yan et al., A 13 μW analog signal processing IC for accurate recognition of multiple intra-cardiac signals. IEEE Trans. Biomed. Circuits Syst. 7(6), 785–795 (2013)

    Article  Google Scholar 

  222. S. Rodriguez, S. Ollmar, M. Waqar, A. Rusu, A batteryless sensor ASIC for implantable bio-impedance applications. IEEE Trans. Biomed. Circuits Syst. 10(3), 533–544 (2016)

    Article  Google Scholar 

  223. C.L. Wei, Y.W. Wang, B.D. Liu, Wide-range filter-based sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurements. IEEE Trans. Biomed. Circuits Syst. 8(3), 442–450 (2014)

    Article  Google Scholar 

  224. R.G. Meyer, W.M.C. Sansen, S. Peeters, The differential pair as a triangle-sine wave converter. IEEE J. Solid-State Circuits 11(3), 418–420 (1976)

    Article  Google Scholar 

  225. S. Thuries, É. Tournier, A. Cathelin, S. Godet, J. Graffeuil, A 6-GHz low-power BiCMOS SiGe: C 0.25 μm direct digital synthesizer. IEEE Microw. Wirel. Compon. Lett. 18(1), 46–48 (2008)

    Google Scholar 

  226. Z. Tang, O. Ishizuka, H. Matsumoto, MOS triangle-to-sine wave convertor based on subthreshold operation. Electron. Lett. 26(23), 1983–1985 (1990)

    Article  Google Scholar 

  227. A.A. Hatzopoulos, S. Siskos, J.M. Kontoleon, A complete scheme of built-in self-tests (BIST) structure for fault diagnosis in analog circuits and systems. IEEE Trans. Instrum. Measur. 42(3), 689–694 (1993)

    Article  Google Scholar 

  228. J. Gomez-Quiñones, et al., An application specific multi-channel stimulator for electrokinetically-driven microfluidic devices, in 2011 IEEE 9th International New Circuits and Systems Conference (2011), pp. 350–353

    Google Scholar 

  229. B. Gilbert, Circuits for the precise synthesis of the sine function. Electron. Lett. 13(17), 506–508 (1977)

    Article  Google Scholar 

  230. W.A. Evans, V. Schiffer, A low distortion tri-wave to sine converter. Radio Electron. Eng. 47(5), 217–224 (1977)

    Article  Google Scholar 

  231. O. Ishizuka, Z. Tang, H. Matsumoto, MOS sine function generator using exponential-law technique. Electron. Lett. 27(21), 1937–1939 (1991)

    Article  Google Scholar 

  232. B. Gilbert, A monolithic microsystem for analog synthesis of trigonometric functions and their inverses. IEEE J. Solid-State Circuits 17(6), 1179–1191 (1982)

    Article  Google Scholar 

  233. J.W. Fattaruso, R.G. Meyer, Triangle-to-sine wave conversion with MOS technology. IEEE J. Solid-State Circuits 20(2), 623–631 (1985)

    Article  Google Scholar 

  234. Y.G. Li, A.K.M. Arifuzzman, A.E. Pollard, M.R. Haider, An inductorless low-power tunable sinusoidal oscillator for micro-impedance spectroscopy, in IEEE 15th Annual Wireless and Microwave Technology Conference (WAMICON) (2014), pp. 1–4

    Google Scholar 

  235. T.H. Lee, P.A. Abshire, Accurate, wide range analog sine shaping circuits, in 2014 IEEE 12th International New Circuits and Systems Conference (NEWCAS) (2014), pp. 285–288

    Google Scholar 

  236. C.Y. Yang, J.H. Weng, H.Y. Chang, A 5-GHz direct digital frequency synthesizer using an analog-sine-mapping technique in 0.35-μm SiGe BiCMOS. IEEE J. Solid-State Circuits 46(9), 2064–2072 (2011)

    Google Scholar 

  237. A. Rodriguez-Vazquez, B. Linares-Barranco, J.L. Huertas, E. Sanchez-Sinencio, On the design of voltage-controlled sinusoidal oscillators using OTAs. IEEE Trans. Circuits Syst. 37(2), 198–211 (1990)

    Article  Google Scholar 

  238. B. Linares-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, CMOS OTA-C high-frequency sinusoidal oscillators. IEEE J. Solid-State Circuits 26(2), 160–165 (1991)

    Article  Google Scholar 

  239. B. Linares-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, Generation, design and tuning of OTA-C high frequency sinusoidal oscillators. IEE Proc. G - Circuits Devices Syst. 139(5), 557–568 (1992)

    Article  Google Scholar 

  240. T. Serrano-Gotarredona, B. Linares-Barranco, 7-decade tuning range CMOS OTA-C sinusoidal VCO. Electron. Lett. 34(17), 1621–1622 (1998)

    Article  Google Scholar 

  241. J. Galan, R.G. Carvajal, A. Torralba, F. Munoz, J. Ramirez-Angulo, A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range. IEEE Trans. Circuits Syst. Regul. Pap. 52(2), 283–291 (2005)

    Article  Google Scholar 

  242. B. Linares-Barranco, T. Serrano-Gotarredona, J. Ramos-Martos, J. Ceballos-Caceres, J.M. Mora, A. Linares-Barranco, A precise 90° quadrature OTA-C oscillator tunable in the 50–130-MHz range. IEEE Trans. Circuits Syst. Regul. Pap. 51(4), 649–663 (2004)

    Article  Google Scholar 

  243. K.M. Odame, P. Hasler, Theory and design of OTA-C oscillators with native amplitude limiting. IEEE Trans. Circuits Syst. Regul. Pap. 56(1), 40–50 (2009)

    Article  MathSciNet  Google Scholar 

  244. N. Revanna, T. R. Viswanathan, Low frequency CMOS sinusoidal oscillator for impedance spectroscopy, in 2014 IEEE Dallas Circuits and Systems Conference (DCAS) (2014), pp. 1–4

    Google Scholar 

  245. B. Linares-Barranco, A. Rodriguez-Vazquez, E. Sanchez-Sinencio, J.L. Huertas, 10 MHz CMOS OTA-C voltage-controlled quadrature oscillator. Electron. Lett. 25(12), 765–767 (1989)

    Article  Google Scholar 

  246. L.L. Presti, G. Cardamone, A direct digital frequency synthesizer using an IIR filter implemented with a DSP microprocessor, in 1994 IEEE International Conference on Acoustics, Speech, and Signal Processing 1994 (ICASSP-94) (1994), p. III/201-III/204

    Google Scholar 

  247. M. Schanerberger, S.S. Awad, The implementation of a digital sine wave oscillator using the TMS320C25: distortion reduction and applications. IEEE Trans. Instrum. Meas. 39(6), 870–873 (1990)

    Article  Google Scholar 

  248. F. Kua, in Generation of a sine wave using a TMS320C54x digital signal processor. Texas Instruments, Application Report SPRA819, July 2004

    Google Scholar 

  249. A.I. Abu-el-haija, M.M. Al-ibrahim, Digital oscillator having low sensitivity and roundoff errors. IEEE Trans. Aerosp. Electron. Syst. AES-22(1), 23–33 (1986)

    Google Scholar 

  250. A. Abu-El-Haija, M. Al-Ibrahim, Improving performance of digital sinusoidal oscillators by means of error feedback circuits. IEEE Trans. Circuits Syst. 33(4), 373–380 (1986)

    Article  Google Scholar 

  251. A.I. Abu-El-Haija, M.M. Al-Ibrahim, M.A. Al-Jarrah, Recursive digital sine wave oscillators using the TMS32010 DSP, in Conference Proceedings. 10th Anniversary. IMTC/94. Advanced Technologies in I M. 1994 IEEE Instrumentation and Measurement Technolgy Conference (1994), pp. 792–796

    Google Scholar 

  252. S.M. Kuo, B.H. Lee, W. Tian, Real-Time Digital Signal Processing: Fundamentals, Implementations and Applications (Wiley, New York, 2013)

    Google Scholar 

  253. V. Matic, V. Marinkovic-Nedelicki, V. Tadic, Comparison of digital signal processing methods for sine wave signal generation, in Telecommunications Symposium. ITS ’98 Proceedings. SBT/IEEE International (1998), pp. 290–295

    Google Scholar 

  254. J.G. Proakis, D.K. Manolakis, Digital Signal Processing (Pearson Higher Ed, 2013)

    Google Scholar 

  255. L. Lo Presti, G. Cardamone, A. De Marchi, E. Rubiola, A new architecture for a sinewave output DDS with high spectral purity, in Direct Digital Frequency Synthesizers (Wiley-IEEE Press, New York, 1999), pp. 352–357

    Google Scholar 

  256. P.R.B. de Carvalho, J.A.A. Palacio, W.V. Noije, Area optimized CORDIC-based numerically controlled oscillator for electrical bio-impedance spectroscopy, in 2016 IEEE International Frequency Control Symposium (IFCS) (2016), pp. 1–6

    Google Scholar 

  257. C. Yang, A.J. Mason, Fully integrated seven-order frequency-range quadrature sinusoid signal generator. IEEE Trans. Instrum. Meas. 58(10), 3481–3489 (2009)

    Article  Google Scholar 

  258. D. Rairigh, X. Liu, C. Yang, A.J. Mason, Sinusoid signal generator for on-chip impedance spectroscopy, in 2009 IEEE International Symposium on Circuits and Systems (2009), pp. 1961–1964

    Google Scholar 

  259. M. Nawito, H. Richter, J.N. Burghartz, Compact wide-range sinusoidal signal generator for in vivo impedance spectroscopy, in 2015 Conference on Design of Circuits and Integrated Systems (DCIS) (2015), pp. 1–5

    Google Scholar 

  260. S.J. Kweon, S.H. Jo, J.H. Park, and H.J. Yoo, A CMOS sinusoidal signal generator based on mixed-time processing for electrical bioimpedance spectroscopy supporting beta dispersion range, in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (2016), pp. 91–94

    Google Scholar 

  261. J. Vankka, M. Waltari, M. Kosunen, K.A.I. Halonen, A direct digital synthesizer with an on-chip D/A-converter. IEEE J. Solid-State Circuits 33(2), 218–227 (1998)

    Article  Google Scholar 

  262. J.M.P. Langlois, D. Al-Khalili, Novel approach to the design of direct digital frequency synthesizers based on linear interpolation. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 50(9), 567–578 (2003)

    Article  Google Scholar 

  263. B.-D. Yang, J.H. Choi, S.-H. Han, L.-S. Kim, H.-K. Yu, An 800-MHz low-power direct digital frequency synthesizer with an on-chip D/A converter. IEEE J. Solid-State Circuits 39(5), 761–774 (2004)

    Google Scholar 

  264. A.L. McEwan, S. Collins, Efficient, ROM-less DDFS using non-linear interpolation and non-linear DAC. Analog Integr. Circuits Signal Process. 48(3), 231–237 (2006)

    Article  Google Scholar 

  265. X. Yu, F.F. Dai, J.D. Irwin, R.C. Jaeger, A 12 GHz 1.9 W direct digital synthesizer MMIC implemented in 0.18 m SiGe BiCMOS technology. IEEE J. Solid-State Circuits 43(6), 1384–1393 (2008)

    Article  Google Scholar 

  266. C. Shi, E. Sánchez-Sinencio, 150-850 MHz high-linearity sine-wave synthesizer architecture based on FIR filter approach and SFDR optimization. IEEE Trans. Circuits Syst. Regul. Pap. 62(9), 2227–2237 (2015)

    Article  Google Scholar 

  267. L. Constantinou, R. Bayford, A. Demosthenous, A wideband low-distortion cmos current driver for tissue impedance analysis. IEEE Trans. Circuits Syst. II Express Briefs 62(2), 154–158 (2015)

    Article  Google Scholar 

  268. L. Constantinou, I.F. Triantis, R. Bayford, A. Demosthenous, High-power CMOS current driver with accurate transconductance for electrical impedance tomography. IEEE Trans. Biomed. Circuits Syst. 8(4), 575–583 (2014)

    Article  Google Scholar 

  269. N.V. Helleputte et al., A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE J. Solid-State Circuits 50(1), 230–244 (2015)

    Article  Google Scholar 

  270. M. Crescentini, M. Bennati, M. Tartagni, A high resolution interface for Kelvin impedance sensing. IEEE J. Solid-State Circuits 49(10), 2199–2212 (2014)

    Article  Google Scholar 

  271. R. Genov, M. Stanacevic, M. Naware, G. Cauwenberghs, N.V. Thakor, 16-channel integrated potentiostat for distributed neurochemical sensing. IEEE Trans. Circuits Syst. Regul. Pap. 53(11), 2371–2376 (2006)

    Article  Google Scholar 

  272. S. Shin, S. J. Kweon, J.H. Park, Y.C. Choi, H.J. Yoo, An efficient, wide range time-to-digital converter using cascaded time-interpolation stages for electrical impedance spectroscopy, in 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) (2016), pp. 425–428

    Google Scholar 

  273. H. Huang, S. Palermo, A TDC-based front-end for rapid impedance spectroscopy, in 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS) (2013), pp. 169–172

    Google Scholar 

  274. T.A. Chen, W.J. Wu, C.L. Wei, R.B. Darling, B.D. Liu, Novel 10-bit impedance-to-digital converter for electrochemical impedance spectroscopy measurements. IEEE Trans. Biomed. Circuits Syst. 11(2), 370–379 (2017)

    Google Scholar 

  275. J. Rosell, P. Riu, Common-mode feedback in electrical impedance tomography. Clin. Phys. Physiol. Measur. 13(A), 11 (1992)

    Google Scholar 

  276. M. Rahal, A. Demosthenous, R. Bayford, An integrated common-mode feedback topology for multi-frequency bioimpedance imaging, in 2009 Proceedings of ESSCIRC (2009), pp. 416–419

    Google Scholar 

  277. P.J. Langlois, Y. Wu, R.H. Bayford, A. Demosthenous, On the application of frequency selective common mode feedback for multifrequency EIT. Physiol. Measur. 36(6), 1337 (2015)

    Article  Google Scholar 

  278. X. Tan et al., 4.3 μW 10 fA-sensitivity dual-mode current converter for implantable glucose monitoring. Electron. Lett. 51(19), 1484–1486 (2015)

    Article  Google Scholar 

  279. C. Yang, Y. Huang, B.L. Hassler, R.M. Worden, A.J. Mason, Amperometric electrochemical microsystem for a miniaturized protein biosensor array. IEEE Trans. Biomed. Circuits Syst. 3(3), 160–168 (2009)

    Article  Google Scholar 

  280. L. Li, X. Liu, W.A. Qureshi, A.J. Mason, CMOS amperometric instrumentation and packaging for biosensor array applications. IEEE Trans. Biomed. Circuits Syst. 5(5), 439–448 (2011)

    Article  Google Scholar 

  281. S. Hwang, C.N. LaFratta, V. Agarwal, X. Yu, D.R. Walt, S. Sonkusale, CMOS microelectrode array for electrochemical lab-on-a-chip applications. IEEE Sens. J. 9(6), 609–615 (2009)

    Article  Google Scholar 

  282. P.M. Levine, P. Gong, R. Levicky, K.L. Shepard, Active CMOS sensor array for electrochemical biomolecular detection. IEEE J. Solid-State Circuits 43(8), 1859–1871 (2008)

    Article  Google Scholar 

  283. D. Kim, B. Goldstein, W. Tang, F.J. Sigworth, E. Culurciello, Noise analysis and performance comparison of low current measurement systems for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(1), 52–62 (2013)

    Article  Google Scholar 

  284. S. Ayers, K.D. Gillis, M. Lindau, B.A. Minch, Design of a CMOS potentiostat circuit for electrochemical detector arrays. IEEE Trans. Circuits Syst. Regul. Pap. 54(4), 736–744 (2007)

    Article  Google Scholar 

  285. M.M. Ahmadi, G.A. Jullien, Current-mirror-based potentiostats for three-electrode amperometric electrochemical sensors. IEEE Trans. Circuits Syst. Regul. Pap. 56(7), 1339–1348 (2009)

    Article  MathSciNet  Google Scholar 

  286. C.I. Dorta-Quiñones, X.Y. Wang, R.K. Dokania, A. Gailey, M. Lindau, A.B. Apsel, A wireless FSCV monitoring IC with analog background subtraction and UWB telemetry. IEEE Trans. Biomed. Circuits Syst. 10(2), 289–299 (2016)

    Article  Google Scholar 

  287. V. Balasubramanian, P.F. Ruedi, Y. Temiz, A. Ferretti, C. Guiducci, C.C. Enz, A 0.18 μm biosensor front-end based on 1/f noise, distortion cancelation and chopper stabilization techniques. IEEE Trans. Biomed. Circuits Syst. 7(5), 660–673 (2013)

    Article  Google Scholar 

  288. M.M. Ahmadi, G.A. Jullien, A wireless-implantable microsystem for continuous blood glucose monitoring. IEEE Trans. Biomed. Circuits Syst. 3(3), 169–180 (2009)

    Article  Google Scholar 

  289. M. Stanacevic, K. Murari, A. Rege, G. Cauwenberghs, N.V. Thakor, VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing. IEEE Trans. Biomed. Circuits Syst. 1(1), 63–72 (2007)

    Article  Google Scholar 

  290. M. Mollazadeh, K. Murari, G. Cauwenberghs, N. Thakor, Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity. IEEE Trans. Biomed. Circuits Syst. 3(6), 388–397 (2009)

    Article  Google Scholar 

  291. M. Roham et al., A wireless IC for wide-range neurochemical monitoring using amperometry and fast-scan cyclic voltammetry. IEEE Trans. Biomed. Circuits Syst. 2(1), 3–9 (2008)

    Article  Google Scholar 

  292. B. Bozorgzadeh, D.P. Covey, C.D. Howard, P.A. Garris, P. Mohseni, A Neurochemical Pattern generator SoC with switched-electrode management for single-chip electrical stimulation and 9.3 μW, 78 pA rms, 400 V/s FSCV sensing. IEEE J. Solid-State Circuits 49(4), 881–895 (2014)

    Article  Google Scholar 

  293. B. Bozorgzadeh, D.R. Schuweiler, M.J. Bobak, P.A. Garris, P. Mohseni, Neurochemostat: a neural interface SoC with integrated chemometrics for closed-loop regulation of brain dopamine. IEEE Trans. Biomed. Circuits Syst. 10(3), 654–667 (2016)

    Article  Google Scholar 

  294. C.A. Murillo, B. C. Lopez, S.C. Pueyo, Voltage-to-Frequency Converters: CMOS Design and Implementation (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  295. I.M. Filanovsky, H. Baltes, CMOS Schmitt trigger design. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 41(1), 46–49 (1994)

    Google Scholar 

  296. C. Azcona, B. Calvo, N. Medrano, S. Celma, 1.2 V-0.18-μm CMOS temperature sensors with quasi-digital output for portable systems. IEEE Trans. Instrum. Meas. 64(9), 2565–2573 (2015)

    Google Scholar 

  297. A.B. Grebene, Bipolar and MOS Analog Integrated Circuit Design (Wiley-Interscience, New York, 2002)

    Google Scholar 

  298. C.C. Wang, T.J. Lee, C.C. Li, R. Hu, An All-MOS high-linearity voltage-to-frequency converter chip with 520-kHz/V sensitivity. IEEE Trans. Circuits Syst. II Express Briefs 53(8), 744–747 (2006)

    Article  Google Scholar 

  299. V. Srinivasan, R. Chawla, P. Hasler, Linear current-to-voltage and voltage-to-current converters, in 48th Midwest Symposium on Circuits and Systems (2005), pp. 675–678

    Google Scholar 

  300. R. Shukla, J. Ramirez-Angulo, A. Lopez-Martin, R.G. Carvajal, A low voltage rail to rail V-I conversion scheme for applications in current mode A/D converters, in 2004 IEEE International Symposium on Circuits and Systems (2004), I-916-19

    Google Scholar 

  301. A.J. Lopez-Martin, J. Ramirez-Angulo, R.G. Carvajal, ±1.5V 3mW CMOS V–I converter with 75 dB SFDR for 6 Vpp input swings. Electron. Lett. 43(6), 31–32 (2007)

    Google Scholar 

  302. C. Azcona, B. Calvo, S. Celma, N. Medrano, P.A. Martínez, Low-voltage low-power CMOS rail-to-rail voltage-to-current converters. IEEE Trans. Circuits Syst. Regul. Pap. 60(9), 2333–2342 (2013)

    Article  MathSciNet  Google Scholar 

  303. C. Azcona, B. Calvo, S. Celma, N. Medrano, P.A. Martínez, Ratiometric voltage-to-frequency converter for long-life autonomous portable equipment. IEEE Sens. J. 13(6), 2382–2390 (2013)

    Article  Google Scholar 

  304. R.A. Croce et al., A highly miniaturized low-power CMOS-Based pH monitoring platform. IEEE Sens. J. 15(2), 895–901 (2015)

    Article  MathSciNet  Google Scholar 

  305. K. Zhu, S.K. Islam, M.R. Haider, M. Roknsharifi, J. Holleman, Simple oscillators-based readout circuit for low-power biomedical implant system. Analog Integr. Circuits Signal Process. 72(2), 383–393 (2012)

    Article  Google Scholar 

  306. D. Cirmirakis, A. Demosthenous, N. Saeidi, N. Donaldson, Humidity-to-frequency sensor in CMOS technology with wireless readout. IEEE Sens. J. 13(3), 900–908 (2013)

    Article  Google Scholar 

  307. M.S.-C. Lu, Y.-C. Chen, P.-C. Huang, 5 × 5 CMOS capacitive sensor array for detection of the neurotransmitter dopamine. Biosens. Bioelectron. 26(3), 1093–1097 (2010)

    Article  Google Scholar 

  308. A. Bonanno, M. Crepaldi, I. Rattalino, P. Motto, D. Demarchi, P. Civera, A CMOS operational Schmitt trigger R-to-F converter for nanogap-based nanosensors read-out. IEEE Trans. Circuits Syst. Regul. Pap. 60(4), 975–988 (2013)

    Article  Google Scholar 

  309. M. Grassi, P. Malcovati, A. Baschirotto, A 141-dB dynamic range CMOS gas-sensor interface circuit without calibration with 16-bit digital output word. IEEE J. Solid-State Circuits 42(7), 1543–1554 (2007)

    Article  Google Scholar 

  310. W. Yun, R.T. Howe, P.R. Gray, Surface micromachined, digitally force-balanced accelerometer with integrated CMOS detection circuitry, in Technical Digest IEEE Solid-State Sensor and Actuator Workshop (1992), pp. 126–131

    Google Scholar 

  311. P. Holmberg, Automatic balancing of linear AC bridge circuits for capacitive sensor elements. IEEE Trans. Instrum. Meas. 44(3), 803–805 (1995)

    Article  Google Scholar 

  312. J.A. Geen, S.J. Sherman, J.F. Chang, S.R. Lewis, Single-chip surface micromachined integrated gyroscope with 50°/h Allan deviation. IEEE J. Solid-State Circuits 37(12), 1860–1866 (2002)

    Article  Google Scholar 

  313. N. Yazdi, A. Mason, K. Najafi, K.D. Wise, A generic interface chip for capacitive sensors in low-power multi-parameter microsystems. Sens. Actuators Phys. 84(3), 351–361 (2000)

    Article  Google Scholar 

  314. H. Kulah, J. Chae, N. Yazdi, K. Najafi, Noise analysis and characterization of a sigma-delta capacitive microaccelerometer. IEEE J. Solid-State Circuits 41(2), 352–361 (2006)

    Article  Google Scholar 

  315. W.P. Chan et al., A monolithically integrated pressure/oxygen/temperature sensing SoC for multimodality intracranial neuromonitoring. IEEE J. Solid-State Circuits 49(11), 2449–2461 (2014)

    Article  Google Scholar 

  316. Y.M. Wang, P.K. Chan, H.K.H. Li, S.E. Ong, A low-power highly sensitive capacitive accelerometer IC using auto-zero time-multiplexed differential technique. IEEE Sens. J. 15(11), 6179–6191 (2015)

    Article  Google Scholar 

  317. Z.P. Fang, J.T. Mortimer, Selective activation of small motor axons by quasitrapezoidal current pulses. IEEE Trans. Biomed. Eng. 38(2), 168–174 (1991)

    Article  Google Scholar 

  318. W.M. Grill, J.T. Mortimer, The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans. Biomed. Eng. 43(2), 161–166 (1996)

    Article  Google Scholar 

  319. J.J. Sit, R. Sarpeshkar, A low-power blocking-capacitor-free charge-balanced electrode-stimulator chip with less than 6 nA DC error for 1-mA full-scale stimulation. IEEE Trans. Biomed. Circuits Syst. 1(3), 172–183 (2007)

    Article  Google Scholar 

  320. I. Williams, T.G. Constandinou, An energy-efficient, dynamic voltage scaling neural stimulator for a proprioceptive prosthesis. IEEE Trans. Biomed. Circuits Syst. 7(2), 129–139 (2013)

    Article  Google Scholar 

  321. T.G. Constandinou, J. Georgiou, C. Toumazou, A partial-current-steering biphasic stimulation driver for vestibular prostheses. IEEE Trans. Biomed. Circuits Syst. 2(2), 106–113 (2008)

    Article  Google Scholar 

  322. E. Greenwald, et al., A CMOS current steering neurostimulation array with integrated DAC calibration and charge balancing. IEEE Trans. Biomed. Circuits Syst. 11(2), 324–335 (2017)

    Google Scholar 

  323. D. Jiang, A. Demosthenous, T. Perkins, X. Liu, N. Donaldson, A stimulator ASIC featuring versatile management for vestibular prostheses. IEEE Trans. Biomed. Circuits Syst. 5(2), 147–159 (2011)

    Article  Google Scholar 

  324. N. Tran et al., A complete 256-electrode retinal prosthesis chip. IEEE J. Solid-State Circuits 49(3), 751–765 (2014)

    Article  MathSciNet  Google Scholar 

  325. H. Tang, Z.C. Sun, K.W.R. Chew, L. Siek, A 1.33 μW 8.02-ENOB 100 kS/s successive approximation ADC with supply reduction technique for implantable retinal prosthesis. IEEE Trans. Biomed. Circuits Syst. 8(6), 844–856 (2014)

    Article  Google Scholar 

  326. J.H. Tsai et al., A 0.003 mm2 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS with digital error correction and correlated-reversed switching. IEEE J. Solid-State Circuits 50(6), 1382–1398 (2015)

    Article  Google Scholar 

  327. F.M. Yaul, A.P. Chandrakasan, A 10 bit SAR ADC with data-dependent energy reduction using LSB-first successive approximation. IEEE J. Solid-State Circuits 49(12), 2825–2834 (2014)

    Article  Google Scholar 

  328. X. Xing, G.G.E. Gielen, A 42 fJ/Step-FoM two-step VCO-based delta-sigma ADC in 40 nm CMOS. IEEE J. Solid-State Circuits 50(3), 714–723 (2015)

    Article  Google Scholar 

  329. X. Zhang, Y. Lian, A 300-mV 220-nW event-driven ADC with real-time QRS detection for wearable ECG sensors. IEEE Trans. Biomed. Circuits Syst. 8(6), 834–843 (2014)

    Article  Google Scholar 

  330. A. Rodríguez-Pérez, M. Delgado-Restituto, F. Medeiro, A 515 nW, 0-18 dB programmable gain analog-to-digital converter for in-channel neural recording interfaces. IEEE Trans. Biomed. Circuits Syst. 8(3), 358–370 (2014)

    Article  Google Scholar 

  331. S. Oh et al., A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system. IEEE J. Solid-State Circuits 50(7), 1581–1591 (2015)

    Article  Google Scholar 

  332. H. Nakane et al., A fully integrated SAR ADC using digital correction technique for triple-mode mobile transceiver. IEEE J. Solid-State Circuits 49(11), 2503–2514 (2014)

    Article  Google Scholar 

  333. C.H. Chen, Y. Zhang, T. He, P.Y. Chiang, G.C. Temes, A micro-power two-step incremental analog-to-digital converter. IEEE J. Solid-State Circuits 50(8), 1796–1808 (2015)

    Article  Google Scholar 

  334. Y. Li, D. Zhao, W.A. Serdijn, A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)

    Article  Google Scholar 

  335. A. Sukumaran, S. Pavan, Low power design techniques for single-bit audio continuous-time delta sigma ADCs using FIR feedback. IEEE J. Solid-State Circuits 49(11), 2515–2525 (2014)

    Article  Google Scholar 

  336. G.Y. Huang, S.J. Chang, C.C. Liu, Y.Z. Lin, A 1-μW 10-bit 200-kS/s SAR ADC with a bypass window for biomedical applications. IEEE J. Solid-State Circuits 47(11), 2783–2795 (2012)

    Article  Google Scholar 

  337. A. Shikata, R. Sekimoto, T. Kuroda, H. Ishikuro, A 0.5 V 1.1MS/sec 6.3fJ/conversion-step SAR-ADC with tri-level comparator in 40 nm CMOS, in 2011 Symposium on VLSI Circuits—Digest of Technical Papers (2011), pp. 262–263

    Google Scholar 

  338. J. Zhang, Y. Lian, L. Yao, B. Shi, A 0.6-V 82-dB 28.6-μW continuous-time audio delta-sigma modulator. IEEE J. Solid-State Circuits 46(10), 2326–2335 (2011)

    Article  Google Scholar 

  339. K. Kim, Y. Kim, W. Yu, S. Cho, A 7b, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier, in 2012 Symposium on VLSI Circuits (VLSIC) (2012), pp. 192–193

    Google Scholar 

  340. S. Naraghi, M. Courcy, M.P. Flynn, A 9-bit, 14 μW and 0.06 mm2 Pulse position modulation ADC in 90 nm digital CMOS. IEEE J. Solid-State Circuits 45(9), 1870–1880 (2010)

    Google Scholar 

  341. M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E.A.M. Klumperink, B. Nauta, A 10-bit charge-redistribution ADC consuming 1.9 μW at 1 MS/s. IEEE J. Solid-State Circuits 45(5), 1007–1015 (2010)

    Article  Google Scholar 

  342. S.K. Lee, S.J. Park, H.J. Park, J.Y. Sim, A 21 fJ/conversion-step 100 kS/s 10-bit ADC with a low-noise time-domain comparator for low-power sensor interface. IEEE J. Solid-State Circuits 46(3), 651–659 (2011)

    Article  Google Scholar 

  343. D. Zhang, A. Bhide, A. Alvandpour, A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices. IEEE J. Solid-State Circuits 47(7), 1585–1593 (2012)

    Google Scholar 

  344. C.C. Lee, M.P. Flynn, A SAR-assisted two-stage pipeline ADC. IEEE J. Solid-State Circuits 46(4), 859–869 (2011)

    Article  Google Scholar 

  345. R. Xu, B. Liu, J. Yuan, Digitally calibrated 768-kS/s 10-b minimum-size SAR ADC array with dithering. IEEE J. Solid-State Circuits 47(9), 2129–2140 (2012)

    Article  Google Scholar 

  346. H.C. Hong, G.M. Lee, A 65-fJ/conversion-step 0.9-V 200-kS/s rail-to-rail 8-bit successive approximation ADC. IEEE J. Solid-State Circuits 42(10), 2161–2168 (2007)

    Article  Google Scholar 

  347. P.J.A. Harpe et al., A 26 μW 8 bit 10 MS/s asynchronous SAR ADC for low energy radios. IEEE J. Solid-State Circuits 46(7), 1585–1595 (2011)

    Article  Google Scholar 

  348. T.C. Sepke, in Comparator design and analysis for comparator-based switched-capacitor circuits. Thesis, Massachusetts Institute of Technology (2006)

    Google Scholar 

  349. E. Roza, Analog-to-digital conversion via duty-cycle modulation. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 44(11), 907–914 (1997)

    Article  Google Scholar 

  350. P.R. Kinget, A. A. Lazar, L.T. Toth, On the robustness of an analog VLSI implementation of a time encoding machine, in 2005 IEEE International Symposium on Circuits and Systems (2005), pp. 4221–4224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kassanos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kassanos, P., Ip, H., Yang, GZ. (2018). Ultra-Low Power Application-Specific Integrated Circuits for Sensing. In: Yang, GZ. (eds) Implantable Sensors and Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-69748-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69748-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69747-5

  • Online ISBN: 978-3-319-69748-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics