Skip to main content
Log in

Microwell arrays for uniform-sized embryoid body-mediated endothelial cell differentiation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) cell is of great interest cell source in regenerating tissue constructs. We hypothesized that the interaction of cell-extracellular matrices (ECMs) would enable the control of ES cell differentiation pathway. We fabricated the hydrogel microwell array system to regulate uniform-sized embryoid bodies (EBs) and replate into various ECM components (e.g., gelatin, collagen I, fibronectin, laminin, and Matrigel). We demonstrated that collagen I and laminin largely induced ES cell-derived endothelial cell differentiation compared to gelatin. We also characterized ECMs-dependent endothelial cell differentiation by evaluating the endothelial gene expression, showing that Flk1 endothelial gene was highly expressed on collagen I. We also demonstrated the effect of the integrin on uniform-sized EBs-derived endothelial cell differentiation, showing that integrin α1 was largely expressed on laminin. Therefore, the cell-ECM interaction could be potentially powerful for controlling the uniform-sized EBs-derived endothelial cell differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • C.L. Bauwens, R. Peerani, S. Niebruegge, K.A. Woodhouse, E. Kumacheva, M. Husain, P.W. Zandstra, Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26(9), 2300–2310 (2008)

    Article  Google Scholar 

  • Y.Y. Choi, B.G. Chung, D.H. Lee, A. Khademhosseini, J.H. Kim, S.H. Lee, Controlled-size embryoid body formation in concave microwell arrays. Biomaterials 31(15), 4296–4303 (2010)

    Article  Google Scholar 

  • J.E. Ferguson, R.W. Kelley, C. Patterson, Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler. Thromb. Vasc. 25(11), 2246–2254 (2005)

    Article  Google Scholar 

  • S.E. Francis, K.L. Goh, K. Hodivala-Dilke, B.L. Bader, M. Stark, D. Davidson, R.O. Hynes, Central roles of alpha(5)beta(1) integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler. Thromb. Vasc. 22(6), 927–933 (2002)

    Article  Google Scholar 

  • R. Friel, S. van der Sar, P.J. Mee, Embryonic stem cells: understanding their history, cell biology and signalling. Adv. Drug Deliv. Rev. 57(13), 1894–1903 (2005)

    Article  Google Scholar 

  • R. Hallmann, N. Horn, M. Selg, O. Wendler, F. Pausch, L.M. Sorokin, Expression and function of laminins in the embryonic and mature vasculature. Physiol. Rev. 85(3), 979–1000 (2005)

    Article  Google Scholar 

  • Y. Hayashi, M.K. Furue, T. Okamoto, K. Ohnuma, Y. Myoishi, Y. Fukuhara, T. Abe, J.D. Sato, R. Hata, M. Asashima, Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells 25(12), 3005–3015 (2007)

    Article  Google Scholar 

  • N.F. Huang, B. Patlolla, O. Abilez, H. Sharma, J. Rajadas, R.E. Beygui, C.K. Zarins, J.P. Cooke, A matrix micropatterning platform for cell localization and stem cell fate determination. Acta Biomater. 6(12), 4614–4621 (2010)

    Article  Google Scholar 

  • Y.S. Hwang, B.G. Chung, D. Ortmann, N. Hattori, H.C. Moeller, A. Khademhosseini, Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc. Natl. Acad. Sci. U. S. A. 106(40), 16978–16983 (2009)

    Article  Google Scholar 

  • J. Ivaska, J. Heino, Adhesion receptors and cell invasion: mechanisms of integrin- guided degradation of extracellular matrix. Cell. Mol. Life Sci. 57(1), 16–24 (2000)

    Article  Google Scholar 

  • R.K. Jain, Molecular regulation of vessel maturation. Nat. Med. 9(6), 685–693 (2003)

    Article  Google Scholar 

  • L. Jakobsson, A. Domogatskaya, K. Tryggvason, D. Edgar, L. Claesson-Welsh, Laminin deposition is dispensable for vasculogenesis but regulates blood vessel diameter independent of flow. FASEB J. 22(5), 1530–1539 (2008)

    Article  Google Scholar 

  • M.J. Jang, Y. Nam, Aqueous micro-contact printing of cell-adhesive biomolecules for patterning neuronal cell cultures. BioChip J. 6(2), 107–113 (2012)

    Article  Google Scholar 

  • N.M. Kane, Q. Xiao, A.H. Baker, Z. Luo, Q. Xu, C. Emanueli, Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol. Ther. 129(1), 29–49 (2011)

    Article  Google Scholar 

  • G.D. Kim, G.J. Kim, J.H. Seok, H.M. Chung, K.M. Chee, G.S. Rhee, Differentiation of endothelial cells derived from mouse embryoid bodies: a possible in vitro vasculogenesis model. Toxicol. Lett. 180(3), 166–173 (2008)

    Article  Google Scholar 

  • S.H. Kim, G.H. Lee, J.Y. Park, Microwell fabrication methods and applications for cellular studies. Biomed. Eng. Lett 3(3), 131–137 (2013)

    Article  Google Scholar 

  • D. Malan, D. Wenzel, A. Schmidt, C. Geisen, A. Raible, B. Bolck, B.K. Fleischmann, W. Bloch, Endothelial beta1 integrins regulate sprouting and network formation during vascular development. Development 137(6), 993–1002 (2010)

    Article  Google Scholar 

  • H.C. Moeller, M.K. Mian, S. Shrivastava, B.G. Chung, A. Khademhosseini, A microwell array system for stem cell culture. Biomaterials 29(6), 752–763 (2008)

    Article  Google Scholar 

  • J.C. Mohr, J.J. de Pablo, S.P. Palecek, 3-D microwell culture of human embryonic stem cells. Biomaterials 27(36), 6032–6042 (2006)

    Article  Google Scholar 

  • H. Niwa, Mouse ES cell culture system as a model of development. Dev. Growth Differ. 52(3), 275–283 (2010)

    Article  MathSciNet  Google Scholar 

  • J. Park, C.H. Cho, N. Parashurama, Y. Li, F. Berthiaume, M. Toner, A.W. Tilles, M.L. Yarmush, Microfabrication-based modulation of embryonic stem cell differentiation. Lab Chip 7(8), 1018–1028 (2007)

    Article  Google Scholar 

  • P. Pimton, S. Sarkar, N. Sheth, A. Perets, C. Marcinkiewicz, P. Lazarovici, P.I. Lelkes, Fibronectin-mediated upregulation of α5β1 integrin and cell adhesion during differentiation of mouse embryonic stem cells. Cell Adhes. Migr. 5(1), 73–82 (2011)

    Article  Google Scholar 

  • J.M. Rhodes, M. Simons, The extracellular matrix and blood vessel formation: not just a scaffold. J. Cell. Mol. Med. 11(2), 176–205 (2007)

    Article  Google Scholar 

  • T.J. Rowland, L.M. Miller, A.J. Blaschke, E.L. Doss, A.J. Bonham, S.T. Hikita, L.V. Johnson, D.O. Clegg, Roles of integrins in human induced pluripotent stem cell growth on matrigel and vitronectin. Stem Cells Dev. 19(8), 1231–1240 (2010)

    Article  Google Scholar 

  • Y. Sakai, Y. Yoshiura, K. Nakazawa, Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips. J. Biosci. Bioeng. 111(1), 85–91 (2011)

    Article  Google Scholar 

  • A. van der Flier, K. Badu-Nkansah, C.A. Whittaker, D. Crowley, R.T. Bronson, A. Lacy-Hulbert, R.O. Hynes, Endothelial alpha 5 and alpha v integrins cooperate in remodeling of the vasculature during development. Development 137(14), 2439–2349 (2010)

    Article  Google Scholar 

  • E.S. Wijelath, S. Rahman, J. Murray, Y. Patel, G. Savidge, M. Sobel, Fibronectin promotes VEGF-induced CD34 cell differentiation into endothelial cells. J. Vasc. Surg. 39(3), 655–660 (2004)

    Article  Google Scholar 

  • J. Yamashita, H. Itoh, M. Hirashima, M. Ogawa, S. Nishikawa, T. Yurugi, M. Naito, K. Nakao, S. Nishikawa, Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808), 92–96 (2000)

    Article  Google Scholar 

  • M.H. Zaman, Understanding the molecular basis for differential binding of integrins to collagen and gelatin. Biophys. J. 92(2), L17–L19 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This paper was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Number 20110016331, 2012R1A1A2005822). This work was also supported by Sogang University Research Grant (201310012.01, SRF-201314004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Geun Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Je., Lee, J.M. & Chung, B.G. Microwell arrays for uniform-sized embryoid body-mediated endothelial cell differentiation. Biomed Microdevices 16, 559–566 (2014). https://doi.org/10.1007/s10544-014-9858-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-014-9858-0

Keywords

Navigation