Skip to main content
Log in

Hollow three-dimensional endothelialized microvessel networks based on femtosecond laser ablation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this study, a novel method for the fabrication of hollow three-dimensional (3D) poly(lactic-co-glycolic acid) (PLGA) microvessel scaffolds is proposed. In this novel fabrication method, a salt ingot, which was used as a temporary frame to define the shape of the desired scaffold, was fabricated by extrusion molding. The salt ingot was immersed in a PLGA solution and the PGLA enveloped the ingot entirely. The femtosecond laser ablation technique was used for ablating the desired pattern on the PLGA layer and then the salt ingot was completely dissolved in distilled deionized water. A hollow 3D PLGA scaffold was obtained using this process on which bovine endothelial cells (BECs) were then cultured. Scanning electron microscopy (SEM) and fluorescent images of the cell seeding demonstrate that the BECs adhered and grew well on both the side-wall of the branches and the surroundings of each branch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • J.T. Borenstein, H. Terai, K.R. King, M.R. Kaazempur-Mofrad, J.P. Vacanti, Biomed. Microdevices 4(3), 167 (2002)

    Article  Google Scholar 

  • J.T. Borenstein, M.M. Tupper, P.J. Mack, E.J. Weinberg, A.S. Khalil, J. Hsiao et al., Biomed. Microdevices 12(1), 71 (2010)

    Article  Google Scholar 

  • C.A. Brayfield, K.G. Marra, J.P. Leonard, X.T. Cui, J.C. Gerlach, Acta Biomater. 4(2), 244 (2008)

    Article  Google Scholar 

  • C. Fidkowski, M.R. Kaazempur-Mofrad, J.T. Borenstein, J.P. Vacanti, R. Langer, Y. Wang, Tissue Eng. 11(1–2), 302 (2005)

    Article  Google Scholar 

  • Y.C. Lim, J. Johnson, Z. Fei, Y. Wu, D.F. Farson, J.J. Lannutti, H.W. Choi, L.J. Lee, Biotech. Bioeng. 108(1), 116 (2011)

    Article  Google Scholar 

  • V. Melissinaki, A.A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J.W. Haycock, C. Fotakis, M. Farsari, F. Claeyssenset, Biofabrication 3(4), 045005 (2011)

    Article  Google Scholar 

  • A. Ovsianikov, A. Deiwick, S.V. Vlierberghe, P. Dubruel, L. Möller, G. Dräger, B. Chichkov, Biomacromolecules 12(4), 851–858 (2011)

    Article  Google Scholar 

  • D. Qin, Y. Xia, G.M. Whitesides, Nat. Protoc. 5(3), 491 (2010)

    Article  Google Scholar 

  • J.A. Rogers, R.G. Nuzzo, Mater. Today 8, 50 (2005)

    Article  Google Scholar 

  • F. Romanato, L. Businaro, M. Tormen, F. Perennes, M. Matteucci, B. Marmiroli et al., J. Phys. Conf. Ser. 34, 904 (2006)

    Article  Google Scholar 

  • M. Shin, K. Matsuda, O. Ishii, H. Terai, M.R. Kaazempur-Mofrad, J.T. Borenstein et al., Biomed. Microdevices 6(4), 269 (2004)

    Article  Google Scholar 

  • G.J. Wang, Y.F. Hsu, Biomed. Microdevices 8(1), 51 (2006)

    Article  Google Scholar 

  • G.J. Wang, C.L. Chen, S.H. Hsu, Y.L. Chiang, Microsyst. Technol. 11(1–2), 120 (2005)

    Article  Google Scholar 

  • G.J. Wang, Y.F. Hsu, S.H. Hsu, R.H. Horng, Biomed. Microdevices 8(1), 17 (2006)

    Article  Google Scholar 

  • G.J. Wang, K.H. Ho, S.H. Hsu, K.P. Wang, Biomed. Microdevices 9, 657 (2007a)

    Article  Google Scholar 

  • G.J. Wang, C.C. Hsueh, S.H. Hsu, H.S. Hung, J. Micromech. Microeng. 17, 2000 (2007b)

    Article  Google Scholar 

  • G.J. Wang, Y.C. Lin, J.E. Lee, C.C. Hsueh, S.H. Hsu, H.S. Hung, Biomed. Microdevices 11, 843 (2009)

    Article  Google Scholar 

  • G.J. Wang, Y.C. Lin, S.H. Hsu, Biomed. Microdevices 12, 841 (2010)

    Article  Google Scholar 

  • H.W. Wang, C.W. Cheng, C.W. Li, H.W. Chang, G.J. Wang, Int. J. Nanomed. 7, 1865 (2012)

    Article  Google Scholar 

  • Z. Zainuddin, T.V. Chirila, Z. Barnard, G.S. Watson, C. Toh, I. Blakey et al., Radiat. Phys. Chem. 80(2), 219 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to offer their thanks to the Industrial Technology Research Institute of Taiwan for their financial and equipment support of this research. The financial support by the National Science Council of Taiwan under grant number NSC100-2221-E-005-014-MY3 is also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gou-Jen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HW., Cheng, CW., Li, CW. et al. Hollow three-dimensional endothelialized microvessel networks based on femtosecond laser ablation. Biomed Microdevices 15, 879–885 (2013). https://doi.org/10.1007/s10544-013-9776-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9776-6

Keywords

Navigation