Skip to main content

Microfluidic Coaxial Bioprinting of Hollow, Standalone, and Perfusable Vascular Conduits

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2375))

Abstract

Three-dimensional bioprinting represents promising approach for fabricating standalone and perfusable vascular conduits using biocompatible materials. Here we describe a step-by-step method by using a multichannel coaxial extrusion system (MCCES) and a blend bioink constituting gelatin methacryloyl, sodium alginate, and eight-arm poly(ethylene glycol)-acrylate with a tripentaerythritol core for the fabrication of standalone circumferentially multilayered hollow tubes. This microfluidic bioprinting method allows the fabrication of perfusable vascular conduits with a core lumen, an inner endothelial layer resembling the tunica intima, and an outer smooth muscle cell layer resembling the tunica media of the blood vessel. Biocompatible and perfusable blood vessels with a widely tunable size range in terms of luminal diameters and wall thicknesses can be successfully fabricated using the MCCES.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Benjamin EJ, Muntner P, Bittencourt MSJC (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528

    Article  Google Scholar 

  2. Pashneh-Tala S, MacNeil S, Claeyssens F (2015) The tissue-engineered vascular graft—past, present, and future. Tissue Eng Part B Rev 22:68–100

    Article  Google Scholar 

  3. Seifu DG, Purnama A, Mequanint K, Mantovani DJNRC (2013) Small-diameter vascular tissue engineering. Nat Rev Cardiol 10(7):410

    Article  CAS  Google Scholar 

  4. Ma Z, Kotaki M, Yong T, He W, Ramakrishna S (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26:2527–2536

    Article  CAS  Google Scholar 

  5. Lord MS, Yu W, Cheng B, Simmons A, Poole-Warren L, Whitelock JM (2009) The modulation of platelet and endothelial cell adhesion to vascular graft materials by perlecan. Biomaterials 30:4898–4906

    Article  CAS  Google Scholar 

  6. Taylor LM, Edwards JM, Brant B, Phinney ES, Porter JM (1987) Autogenous reversed vein bypass for lower extremity ischemia in patients with absent or inadequate greater saphenous vein. Am J Surg 153:505–510

    Article  Google Scholar 

  7. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater 74(1):570–581

    Article  Google Scholar 

  8. Catto V, Farè S, Freddi G, Tanzi MC (2014) Vascular tissue engineering: recent advances in small diameter blood vessel regeneration. Vasc Med 2014:923030

    Google Scholar 

  9. Bordenave L, Menu P, Baquey C (2008) Developments towards tissue-engineered, small-diameter arterial substitutes. Expert Rev Med Devices 5:337–347

    Article  CAS  Google Scholar 

  10. Dean EW, Udelsman B, Breuer CK, medicine (2012) Current advances in the translation of vascular tissue engineering to the treatment of pediatric congenital heart disease. Yale J Biol Med 85:229

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tara S, Rocco KA, Hibino N, Sugiura T, Kurobe H, Breuer CK, Shinoka T (2014) Vessel bioengineering– development of small-diameter arterial grafts. Circ J 78(1):17–19

    Article  Google Scholar 

  12. Schöneberg J, De Lorenzi F, Theek B, Blaeser A, Rommel D, Kuehne AJC, Kießling F, Fischer H (2018) Engineering biofunctional in vitro vessel models using a multilayer bioprinting technique. Sci Rep 8(1):10430

    Article  Google Scholar 

  13. Datta P, Ayan B, Ozbolat IT (2017) Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 51:1–20

    Article  CAS  Google Scholar 

  14. Christensen K, Xu C, Chai W, Zhang Z, Fu J, Huang Y (2015) Freeform inkjet printing of cellular structures with bifurcations. Biotechnol Bioeng 112:1047–1055

    Article  CAS  Google Scholar 

  15. Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, Ameer GA, He T-C, Reid RR (2017) 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis 4:185–195

    Article  CAS  Google Scholar 

  16. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773

    Article  CAS  Google Scholar 

  17. Yu Y, Zhang Y, Martin JA, Ozbolat IT (2013) Evaluation of cell viability and functionality in vessel-like bioprintable cell-laden tubular channels. J Biomech Eng 135:091011

    Article  Google Scholar 

  18. Zhang Y, Yu Y, Ozbolat IT (2013) Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med 4:020902

    Article  Google Scholar 

  19. Seol Y-J, Kang H-W, Lee SJ, Atala A, Yoo JJ (2014) Bioprinting technology and its applications. Eur J Cardiothorac Surg 46:342–348

    Article  Google Scholar 

  20. Xiong R, Zhang Z, Chai W, Huang Y, Chrisey DB (2015) Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication 7:045011

    Article  Google Scholar 

  21. Guillotin B, Ali M, Ducom A, Catros S, Keriquel V, Souquet A, Remy M, Fricain J-C, Guillemot F (2013) Laser-assisted bioprinting for tissue engineering. In: Biofabrication. Elsevier, pp 95–118

    Chapter  Google Scholar 

  22. Heinrich MA, Liu W, Jimenez A, Yang J, Akpek A, Liu X, Pi Q, Mu X, Hu N, Schiffelers RM (2019) 3D bioprinting: from benches to translational applications. Small 15(23):e1805510

    Article  Google Scholar 

  23. Maina RM, Barahona MJ, Finotti M, Lysyy T, Geibel P, D’Amico F, Mulligan D, Geibel JP (2018) Generating vascular conduits: from tissue engineering to three-dimensional bioprinting. Innov Surg Sci 3:203–213

    PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7:045009

    Article  Google Scholar 

  25. Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F, Feng G-S, Sheikh F, Chien S, Chen S (2016) Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci U S A 113:2206–2211

    Article  CAS  Google Scholar 

  26. Pi Q, Maharjan S, Yan X, Liu X, Singh B, van Genderen AM, Robledo-Padilla F, Parra-Saldivar R, Hu N, Jia WJAM (2018) Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Adv Mater 30(43):1706913

    Article  Google Scholar 

  27. Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SRJB (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68

    Article  CAS  Google Scholar 

  28. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113(12):3179–3184

    Article  CAS  Google Scholar 

  29. Jafarkhani M, Salehi Z, Aidun A, Shokrgozar MA (2019) Bioprinting in Vascularization Strategies. Iran Biomed J 23(1):9–20

    Article  Google Scholar 

  30. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917

    Article  CAS  Google Scholar 

  31. Freeman FE, Kelly DJ (2017) Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci Rep 7(1):17042–17042

    Article  Google Scholar 

  32. Ooi HW, Mota C, Ten Cate AT, Calore A, Moroni L, Baker MBJB (2018) Thiol–ene alginate hydrogels as versatile bioinks for bioprinting. Biomacromolecules 19(8):3390–3400

    Article  CAS  Google Scholar 

  33. Loessner D, Meinert C, Kaemmerer E, Martine LC, Yue K, Levett PA, Klein TJ, Melchels FPW, Khademhosseini A, Hutmacher DW (2016) Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms. Nat Protoc 11(4):727–746

    Article  CAS  Google Scholar 

  34. Klotz BJ, Gawlitta D, Rosenberg AJ, Malda J, Melchels FPW (2016) Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34(5):394–407

    Article  CAS  Google Scholar 

  35. Yue K, Li X, Schrobback K, Sheikhi A, Annabi N, Leijten J, Zhang W, Zhang YS, Hutmacher DW, Klein TJ, Khademhosseini A (2017) Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials 139:163–171

    Article  CAS  Google Scholar 

  36. Cao X, Ashfaq R, Cheng F, Maharjan S, Li J, Ying G, Hassan S, Xiao H, Yue K, Zhang YS (2019) A tumor-on-a-Chip system with bioprinted blood and lymphatic vessel pair. Adv Funct Mater 29(31):1807173

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Institutes of Health (R00CA201603, R21EB025270, R21EB026175, R01EB028143, R01HL153857, R21EB030257), National Science Foundation (CBET-EBMS-1936105), the Brigham Research Institute, and the American Fund for Alternatives to Animal Research (AFAAR). Y.S.Z. sits on the Scientific Advisory Board of Allevi, Inc., which however, did not support or bias this work. The other authors declare no competing financial/commercial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Shrike Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maharjan, S., He, J.J., Lv, L., Wang, D., Zhang, Y.S. (2022). Microfluidic Coaxial Bioprinting of Hollow, Standalone, and Perfusable Vascular Conduits. In: Zhao, F., Leong, K.W. (eds) Vascular Tissue Engineering. Methods in Molecular Biology, vol 2375. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1708-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1708-3_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1707-6

  • Online ISBN: 978-1-0716-1708-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics