Skip to main content
Log in

A microfluidic device mimicking acinar concentration gradients across the liver acinus

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The acinus-mimicking microfluidic chip, which simulates the in vivo condition of the liver, was developed and reported in this paper. The gradient microenvironment of the liver acinus is replicated within this proposed microfluidic chip. The advantage of this acinus-mimicking chip is capable of adjusting the concentration gradient in a relatively short period of time at around 10 s. At the same instance the non-linear concentration gradient can be presented in the various zones within this microfluidic chip. The other advantage of this proposed design is in the convenience of allowing the direct injection of the cells into the chip. The environment within the chip is multi-welled and gel-free with high cell density. The multi-row pillar microstructure located at the entrance of the top and bottom flow channels is designed to be able to balance the pressure of the perfusion medium. Through this mechanism the shear stress experienced by the cultured cells can be minimized to reduce the potential damage flow from the perfusion process. (3)The fluorescence staining and the observations of the cell morphology verify the life and death of the cells. The shear stress experienced by the cells in the various zones within the chip can be effectively mapped. The serum glutamic oxaloacetic transaminase (SGOT) collected from the supernatants was used to determine the effects of the degassing process and the shear stress of the medium flow on the cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • V.V. Abhyankar, D.J. Beebe, Spatiotemporal micropatterning of cells on arbitrary substrates. Anal. Chem. 79(11), 4066–4073 (2007)

    Article  Google Scholar 

  • V.V. Abhyankar, M.W. Toepke, C.L. Cortesio et al., A platform for assessing chemotactic migration within a spatiotemporally defined 3D microenvironment. Lab Chip 8(9), 1507–1515 (2008)

    Article  Google Scholar 

  • J.W. Allen, S.N. Bhatia, Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol. Bioeng. 82(3), 253–262 (2003)

    Article  Google Scholar 

  • J.W. Allen, S.R. Khetani, S.N. Bhatia, In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol. Sci. 84(1), 110–119 (2005)

    Article  Google Scholar 

  • J. Atencia, J. Morrow, L.E. Locascio, The microfluidic palette: a diffusive gradient generator with spatio-temporal control. Lab Chip 9(18), 2707–2714 (2009)

    Article  Google Scholar 

  • J. Atencia, G.A. Cooksey, L.E. Locascio, A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12(2), 309–316 (2012)

    Article  Google Scholar 

  • S.N. Bhatia, U.J. Balis, M.L. Yarmush et al., Effect of cell-cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 13(14), 1883–1900 (1999)

    Google Scholar 

  • T.A. Broughan, R. Naukam, C. Tan et al., Effects of hepatic zonal oxygen levels on hepatocyte stress responses. J. Surg. Res. 145(1), 150–160 (2008)

    Article  Google Scholar 

  • K. Campbell, A. Groisman, Generation of complex concentration profiles in microchannels in a logarithmically small number of steps. Lab Chip 7(2), 264–272 (2007)

    Article  Google Scholar 

  • A. Carraro, W.M. Hsu, K.M. Kulig et al., In vitro analysis of a hepatic device with intrinsic microvascular-based channels. Biomed. Microdevices 10(6), 795–805 (2008)

    Article  Google Scholar 

  • Y.A. Chen, A.D. King, H.C. Shih et al., Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip. 11(21), 3626–33 (2011)

    Article  Google Scholar 

  • B.G. Chung, J. Choo, Microfluidic gradient platforms for controlling cellular behavior. Electrophoresis. 31(18), 3014–27 (2010)

    Article  Google Scholar 

  • B.G. Chung, L.A. Flanagan, S.W. Rhee et al., Human neural stem cell growth and differentiation in a gradient-generating microfluidic device. Lab Chip 5(4), 401–406 (2005)

    Article  Google Scholar 

  • B.G. Chung, L.F. Kang, A. Khademhosseini, Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin. Drug Discov. 2(12), 1653–1668 (2007)

    Article  Google Scholar 

  • A. Dash, W. Inman, K. Hoffmaster et al., Liver tissue engineering in the evaluation of drug safety. Expert Opin. Drug Metab. Toxicol. 5(10), 1159–1174 (2009)

    Article  Google Scholar 

  • N.T. Elliott, F. Yuan, A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J. Pharm. Sci. 100(1), 59–74 (2011)

    Article  Google Scholar 

  • V.N. Goral, and P.K. Yuen, “Microfluidic Platforms for Hepatocyte Cell Culture: New Technologies and Applications,” Ann. Biomed. Eng (2012)

  • L.G. Griffith, G. Naughton, Tissue engineering–current challenges and expanding opportunities. Science 295(5557), 1009–1014 (2002)

    Article  Google Scholar 

  • L.G. Griffith, M.A. Swartz, Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7(3), 211–224 (2006)

    Article  Google Scholar 

  • D. Irimia, S.Y. Liu, W.G. Tharp et al., Microfluidic system for measuring neutrophil migratory responses to fast switches of chemical gradients. Lab Chip 6(2), 191–198 (2006)

    Article  Google Scholar 

  • M. Jain, A. Yeung, K. Nandakumar, Induced charge electro-osmotic concentration gradient generator. Biomicrofluidics. 4(1), 14110 (2010)

    Article  Google Scholar 

  • K. Jungermann, N. Katz, Functional specialization of different hepatocyte populations. Physiol. Rev. 69(3), 708–764 (1989)

    Google Scholar 

  • K. Jungermann, T. Kietzmann, Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology 31(2), 255–260 (2000)

    Article  Google Scholar 

  • T.M. Keenan, A. Folch, Biomolecular gradients in cell culture systems. Lab Chip 8(1), 34–57 (2008)

    Article  Google Scholar 

  • T.M. Keenan, C.W. Frevert, A. Wu et al., A new method for studying gradient-induced neutrophil desensitization based on an open microfluidic chamber. Lab Chip. 10(1), 116–22 (2010)

    Article  Google Scholar 

  • M.S. Kim, J.H. Yeon, J.K. Park, A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed. Microdevices 9(1), 25–34 (2007)

    Article  Google Scholar 

  • E. Leclerc, K. El Kirat, L. Griscom, In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips. Biomed. Microdevices 10(2), 169–177 (2008)

    Article  Google Scholar 

  • E.L. LeCluyse, P.L. Bullock, A. Parkinson et al., Cultured rat hepatocytes. Pharm. Biotechnol. 8, 121–159 (1996)

    Article  Google Scholar 

  • E.L. LeCluyse, R.P. Witek, M.E. Andersen et al., Organotypic liver culture models: meeting current challenges in toxicity testing. Crit. Rev. Toxicol. 42(6), 501–48 (2012)

    Article  Google Scholar 

  • P.J. Lee, P.J. Hung, L.P. Lee, An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol. Bioeng. 97(5), 1340–1346 (2007)

    Article  Google Scholar 

  • F. Lin, C.M. Nguyen, S.J. Wang et al., Neutrophil migration in opposing chemoattractant gradients using microfluidic chemotaxis devices. Ann. Biomed. Eng. 33(4), 475–482 (2005)

    Article  Google Scholar 

  • K.O. Lindros, Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver. Gen. Pharmacol. 28(2), 191–196 (1997)

    Article  Google Scholar 

  • Y. Ling, J. Rubin, Y. Deng et al., A cell-laden microfluidic hydrogel. Lab Chip 7(6), 756–762 (2007)

    Article  Google Scholar 

  • M-C. S. Y.-S. W. T.-C. S. R.-J. G. C.-H. Liu, “A Novel Micro-Tissue Reactor for Maintaining Hepatocytes in Vitro,” MEMS 2006 Conference, pp. 458–461 (2006)

  • R.S. McCuskey, Sinusoidal endothelial cells as an early target for hepatic toxicants. Clin. Hemorheol. Microcirc. 34(1–2), 5–10 (2006)

    Google Scholar 

  • G. Mehta, C.M. Williams, L. Alvarez et al., Synergistic effects of tethered growth factors and adhesion ligands on DNA synthesis and function of primary hepatocytes cultured on soft synthetic hydrogels. Biomaterials. 31(17), 4657–71 (2010)

    Article  Google Scholar 

  • L.J. Millet, M.E. Stewart, R.G. Nuzzo et al., Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip 10(12), 1525–35 (2010)

    Article  Google Scholar 

  • Y. Nakao, H. Kimura, Y. Sakai et al., Bile canaliculi formation by aligning rat primary hepatocytes in a microfluidic device. Biomicrofluidics. 5(2), 22212 (2011)

    Article  Google Scholar 

  • J. Park, F. Berthiaume, M. Toner et al., Microfabricated grooved substrates as platforms for bioartificial liver reactors. Biotechnol. Bioeng. 90(5), 632–644 (2005)

    Article  Google Scholar 

  • J.Y. Park, C.M. Hwang, S.H. Lee, Gradient generation by an osmotic pump and the behavior of human mesenchymal stem cells under the fetal bovine serum concentration gradient. Lab Chip 7(12), 1673–1680 (2007)

    Article  Google Scholar 

  • J.Y. Park, S.K. Kim, D.H. Woo et al., Differentiation of neural progenitor cells in a microfluidic chip-generated cytokine gradient. Stem Cells 27(11), 2646–2654 (2009)

    Article  Google Scholar 

  • O. Pelkonen, M. Turpeinen, J. Hakkola et al., Inhibition and induction of human cytochrome P450 enzymes: current status. Arch. Toxicol. 82(10), 667–715 (2008)

    Article  Google Scholar 

  • J. Pihl, J. Sinclair, E. Sahlin et al., Microfluidic gradient-generating device for pharmacological profiling. Anal. Chem. 77(13), 3897–3903 (2005)

    Article  Google Scholar 

  • S.R. Quake, A. Scherer, From micro- to nanofabrication with soft materials. Science 290(5496), 1536–1540 (2000)

    Article  Google Scholar 

  • Y. Tanaka, M. Yamato, T. Okano et al., Evaluation of effects of shear stress on hepatocytes by a microchip-based system. Meas. Sci. Technol. 17(12), 3167–3170 (2006)

    Article  Google Scholar 

  • Y.C. Toh, T.C. Lim, D. Tai et al., A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9(14), 2026–2035 (2009)

    Article  Google Scholar 

  • Y.C. Toh, K. Blagovic, J. Voldman, Advancing stem cell research with microtechnologies: opportunities and challenges. Integr. Biol. (Camb). 2(7–8), 305–25 (2010)

    Article  Google Scholar 

  • M.A. Unger, H.P. Chou, T. Thorsen et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463), 113–116 (2000)

    Article  Google Scholar 

  • P.M. van Midwoud, E. Verpoorte, G.M. Groothuis, Microfluidic devices for in vitro studies on liver drug metabolism and toxicity. Integr. Biol. (Camb). 3(5), 509–21 (2011)

    Article  Google Scholar 

  • N. Ye, J. Qin, W. Shi et al., Cell-based high content screening using an integrated microfluidic device. Lab Chip 7(12), 1696–1704 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The first author expresses his sincere appreciation to the leader of his department, Dr. Lin-Mei Wang, for her great help in the paper. This study was supported by the Biomedical Technology and Device Research Laboratories at Industrial Technology Research Institute in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hsien Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, MC., Tseng, SH., Weng, YS. et al. A microfluidic device mimicking acinar concentration gradients across the liver acinus. Biomed Microdevices 15, 767–780 (2013). https://doi.org/10.1007/s10544-013-9762-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-013-9762-z

Keywords

Navigation