Skip to main content
Log in

An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Continuous flow left ventricular assist devices (LVADs) are commonly used as bridge-to-transplantation or destination therapy for heart failure patients. However, non-optimal pumping speeds can reduce the efficacy of circulatory support or cause dangerous ventricular arrhythmias. Optimal flow control for continuous flow LVADs has not been defined and calls for an implantable pressure sensor integrated with the LVAD for real-time feedback control of pump speed based on ventricular pressure. A MEMS pressure sensor prototype is designed, fabricated and seamlessly integrated with LVAD to enable real-time control, optimize its performance and reduce its risks. The pressure sensing mechanism is based on Fabry-Pérot interferometer principle. A biocompatible parylene diaphragm with a silicon mirror at the center is fabricated directly on the inlet shell of the LVAD to sense pressure changes. The sensitivity, range and response time of the pressure sensor are measured and validated to meet the requirements of LVAD pressure sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • K.M. Ainslie, T.A. Desai, Microfabricated implants for applications in therapeutic delivery, tissue engineering, and biosensing. Lab Chip 8(11), 1864–1878 (2008)

    Article  Google Scholar 

  • M.G. Allen, Micromachined endovascularly-implantable wireless aneurysm pressure sensors: from concept to clinic. Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS ’05. The 13th International Conference on. (2005)

  • A. Arndt, P. Nüsser et al., Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient. Artif. Organs 32(10), 761–771 (2008)

    Article  Google Scholar 

  • V. Arya, M. de Vries et al., Exact analysis of the extrinsic Fabry-Perot interferometric optical fiber sensor using Kirchhoff’s diffraction formalism. Opt. Fiber Technol. 1(4), 380–384 (1995)

    Article  Google Scholar 

  • Y. Backlund, L. Rosengren, B. Hok, B. Svedbergh, Passive silicone transensor intended for biomedical, remote pressure monitoring. Sensor. Actuator. 21(1–3), 58 (1990)

    Article  Google Scholar 

  • E.J. Birks, P.D. Tansley et al., Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 355(18), 1873–1884 (2006)

    Article  Google Scholar 

  • K. Biswas, S. Kal, Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon. Microelectron. J. 37(6), 519–525 (2006)

    Article  Google Scholar 

  • L. Bowman, J.D. Meindl, The packaging of implantable integrated sensors. IEEE Trans. Biomed. Eng. 33(2), 248–255 (1986)

    Article  Google Scholar 

  • E.I. Bromley, J.N. Randall et al., A technique for the determination of stress in thin-films. J. Vac. Sci. Tech. B 1(4), 1364–1366 (1983)

    Article  Google Scholar 

  • E. Bullister, S. Reich et al., Physiologic control algorithms for rotary blood pumps using pressure sensor input. Artif. Organs 26(11), 931–938 (2002)

    Article  Google Scholar 

  • M.A. Chan, S.D. Collins et al., A micromachined pressure sensor with fiber-optic interferometric readout. Sensor. Actuator. A Phys. 43(1–3), 196–201 (1994)

    Article  Google Scholar 

  • T.Y. Chang, V.G. Yadav et al., Cell and protein compatibility of parylene-C surfaces. Langmuir 23(23), 11718–11725 (2007)

    Article  Google Scholar 

  • P.-J. Chen, D.C. Rodger et al., Unpowered spiral-tube parylene pressure sensor for intraocular pressure sensing. Sensor. Actuator. A Phys. 127(2), 276–282 (2006)

    Article  Google Scholar 

  • P.J. Chen, D.C. Rodger et al., Microfabricated implantable parylene-based wireless passive intraocular pressure sensors. J. Microelectromech. Syst. 17(6), 1342–1351 (2008)

    Article  Google Scholar 

  • P.-J. Chen, S. Saati et al., Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant. J. Microelectromech. Syst. 19(4), 721–734 (2010)

    Article  Google Scholar 

  • S. Choi, J.R. Boston et al., Hemodynamic controller for left ventricular assist device based on pulsatility ratio. Artif. Organs 31(2), 114–125 (2007)

    Article  Google Scholar 

  • E. Cibula, D. Ðonlagic, Miniature fiber-optic pressure sensor with a polymer diaphragm. Appl. Opt. 44(14), 2736–2744 (2005)

    Article  Google Scholar 

  • E.R. Cosman, N.T. Zervas, P.H. Chapman, B.J. Cosman, M.A. Arnold, A telemetric pressure sensor for ventricular shunt systems. Surg. Neurol. 11, 287 (1979)

    Google Scholar 

  • S. Dabral, J. Vanetten et al., Stress in thermally annealed parylene films. J. Electron. Mater. 21(10), 989–994 (1992)

    Article  Google Scholar 

  • W.P. Eaton, J.H. Smith, Micromachined pressure sensors: review and recent developments. Smart Mater. Struct. 6, 530–539 (1997)

    Article  Google Scholar 

  • S.A. Egorov, A.N. Mamaev, et al., Advanced signal processing method for interferometric fiber optic sensors with straightforward spectral detection. SPIE. (1998)

  • S.J. Farlow, Partial differential equations for scientists and engineers (Dover, Mineola, 1993)

    MATH  Google Scholar 

  • N.E. Fearnot, T.G. Kozma, et al., Coated implantable medical device. USPO. (USA, 1997)

  • A. Ferreira, J.R. Boston et al., A control system for rotary blood pumps based on suction detection. IEEE Trans. Biomed. Eng. 56(3), 656–665 (2009)

    Article  Google Scholar 

  • B.B. Flick, R. Orglmeister, A portable microsystem-based telemetric pressure and temperature measurement unit. IEEE Trans. Biomed. Eng. 47(1), 12–16 (2000)

    Article  Google Scholar 

  • B. Fritz, J. Cysyk et al., Development of an inlet pressure sensor for control in a left ventricular assist device. ASAIO J. 56(3), 180–185 (2010)

    Article  Google Scholar 

  • M. Harada, Y. Qin et al., G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med 11(3), 305–311 (2005)

    Article  Google Scholar 

  • T. Harder, T.J. Yao, et al., Residual stress in thin-film Parylene-C. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (MEMS ’02), pp. 471–474. (Las Vegas, USA, 2002).

  • E. Hong, R. Smith et al., Residual stress development in Pb(Zr, Ti)O-3/ZrO2/SiO2 stacks for piezoelectric microactuators. Thin Solid Films 510(1–2), 213–221 (2006a)

    Article  Google Scholar 

  • E. Hong, S. Trolier-McKinstry et al., Vibration of micromachined circular piezoelectric diaphragms. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(4), 697–706 (2006b)

    Google Scholar 

  • J.-M. Hsu, S. Kammer, et al., Characterization of Parylene-C film as an encapsulation material for neural interface devices. Multi-Material Micro Manufacture (4M2007). (Borovets, Bulgaria, 2007).

  • R. John, Current axial-flow devices—the HeartMate II and Jarvik 2000 left ventricular assist devices. Semin. Thorac. Cardiovasc. Surg. 20(3), 264–272 (2008)

    Article  Google Scholar 

  • E. Kalvesten, L. Smith, et al., The first surface micromachined pressure sensor for cardiovascular pressure measurements. Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on (1998).

  • R. Krishnamani, D. DeNofrio et al., Emerging ventricular assist devices for long-term cardiac support. Nat. Rev. Cardiol. 7(2), 71–76 (2010)

    Article  Google Scholar 

  • W. Li, D.C. Rodger et al., Wafer-level parylene packaging with integrated RF electronics for wireless retinal prostheses. J. Microelectromech. Syst. 19(4), 735–742 (2010)

    Article  Google Scholar 

  • H.-W. Lo, W.-C. Kuo, et al., Recrystallized parylene as a mask for silicon chemical etching. 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS). (Sanya, China, 2008).

  • B. Lu, S. Zheng et al., A study of the autofluorescence of parylene materials for [small mu]TAS applications. Lab Chip 10(14), 1826–1834 (2010)

    Article  Google Scholar 

  • L.W. Miller, F.D. Pagani et al., Use of a continuous-flow device in patients awaiting heart transplantation. N. Engl. J. Med. 357(9), 885–896 (2007)

    Article  Google Scholar 

  • W. Mokwa, Medical implants based on microsystems. Meas. Sci. Technol. 18(5), R47–R57 (2007)

    Article  Google Scholar 

  • W. Mokwa, U. Schnakenberg, On-chip microsystems for medical applications. Microsystem Symp. (Delft) (1998).

  • K.A. Murphy, M.F. Gunther et al., Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors. Opt. Lett. 16(4), 273–275 (1991)

    Article  Google Scholar 

  • T.J. Myers, M. Bolmers et al., Assessment of arterial blood pressure during support with an axial flow left ventricular assist device. J. Heart Lung Transplant. 28(5), 423–427 (2009)

    Article  Google Scholar 

  • T. Ohki, K. Ouriel et al., Initial results of wireless pressure sensing for endovascular aneurysm repair: The APEX Trial—Acute Pressure Measurement to Confirm Aneurysm Sac EXclusion. J. Vasc. Surg. 45(2), 236–242 (2007)

    Article  Google Scholar 

  • R. Puers, G. Vandevoorde, D. De Bruyker, Electrodeposited copper inductors for intraocular pressure telemetry. J. Micromech. Microeng. 10(2), 124 (2000)

    Article  Google Scholar 

  • B. Puers, A. Van Den Bossche et al., An implantable pressure sensor for use in cardiology. Sensor. Actuator. A Phys. 23(1–3), 944–947 (1990)

    Article  Google Scholar 

  • A.O. Ragheb, B.L. Bates, et al., Coated implantable medical device. USPO. (USA, 2001)

  • R.A.M. Receveur, F.W. Lindemans et al., Microsystem technologies for implantable applications. J. Micromech. Microeng. 17(5), R50–R80 (2007)

    Article  Google Scholar 

  • D.C. Rodger, J.D. Weiland et al., Scalable high lead-count parylene package for retinal prostheses. Sensor. Actuator. B Chem. 117(1), 107–114 (2006)

    Article  Google Scholar 

  • J.G. Rogers, K.D. Aaronson et al., Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J. Am. Coll. Cardiol. 55(17), 1826–1834 (2010)

    Article  Google Scholar 

  • K. Sato, M. Shikida et al., Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation. Sensor. Actuator. A Phys. 73(1–2), 131–137 (1999)

    Article  Google Scholar 

  • H. Schima, M. Vollkron et al., First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization. J. Heart Lung Transplant. 25(2), 167–173 (2006)

    Article  Google Scholar 

  • E. Schmidt, J. McIntosh et al., Long-term implants of Parylene-C coated microelectrodes. Med. Biol. Eng. Comput. 26(1), 96–101 (1988)

    Article  Google Scholar 

  • U. Schnakenberg, C. Krüger et al., Intravascular pressure monitoring system. Sensor. Actuator. A Phys. 110(1–3), 61–67 (2004)

    Article  Google Scholar 

  • J.P. Seymour, Y.M. Elkasabi et al., The insulation performance of reactive parylene films in implantable electronic devices. Biomaterials 30(31), 6158–6167 (2009)

    Article  Google Scholar 

  • C.Y. Shih, T.A. Harder et al., Yield strength of thin-film parylene-C. Microsyst. Technol. 10(5), 407–411 (2004)

    Article  Google Scholar 

  • M.S. Slaughter, J.G. Rogers et al., Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361(23), 2241–2251 (2009)

    Article  Google Scholar 

  • D.S. Soane, Z. Martynenko, Polymers in microelectronics, (Elsevier Science Ltd., 1989)

  • N. Stark, Literature review: biological safety of parylene C. Med. Plast. Biomater. 3(2), 30–35 (1996)

    Google Scholar 

  • O. Tabata, R. Asahi et al., Anisotropic etching of silicon in TMAH solutions. Sensor. Actuator. A: Phys. 34(1), 51–57 (1992)

    Article  Google Scholar 

  • M.S. Taylor, J.L. Williams, Barrier coating on blood contacting devices. USPO. (USA 1991)

  • C.M. Terracciano, L.W. Miller et al., Contemporary use of ventricular assist devices. Annu. Rev. Med. 61, 255–270 (2010)

    Article  Google Scholar 

  • S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells. (McGraw-Hill, 1959)

  • M. Vollkron, H. Schima et al., Development of a suction detection system for axial blood pumps. Artif. Organs 28(8), 709–716 (2004)

    Article  Google Scholar 

  • M. Vollkron, H. Schima et al., Advanced suction detection for an axial flow pump. Artif. Organs 30(9), 665–670 (2006)

    Article  Google Scholar 

  • M. Vollkron, P. Voitl et al., Suction events during left ventricular support and ventricular arrhythmias. J. Heart Lung Transplant. 26(8), 819–825 (2007)

    Article  Google Scholar 

  • Z. Xiao, O. Engström et al., Diaphragm deflection of silicon interferometer structures used as pressure sensors. Sensor. Actuator. A Phys. 58(2), 99–107 (1997)

    Article  Google Scholar 

  • H. Xiao, J. Deng et al., Single-crystal sapphire fiber-based strain sensor for high-temperature applications. J. Lightwave Technol. 21(10), 2276 (2003)

    Article  Google Scholar 

  • B. Yu, A. Wang et al., Analysis of fiber Fabry-Pérot interferometric sensors using low-coherence light sources. J. Lightwave Technol. 24(4), 1758 (2006)

    Article  Google Scholar 

  • S. Zheng, H.K. Lin, et al., A novel 3D micro membrane filtration device for capture viable rare circulating tumor cells from whole blood. The 13th in the series of Hilton Head Workshops on the science and technology of solid-state sensors, actuators, and microsystems (Hilton Head 2008). (Hilton Head Island, SC, USA, 2008)

  • S. Zheng, H.K. Lin et al., 3D microfilter device for viable circulating tumor cell (CTC) enrichment from blood. Biomed. Microdevices 13(1), 203–213 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate assistance and help from Penn State Material Research Institute (MRI) and Nanofabrication laboratory (Nanofab). We would also like to express our thanks to Mr. Gene Gerber for his help on the prototype fabrication and Dr. Donghai Wang and his student Zhongxue Chen for helping us melt the parylene-C film.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Yang Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, MD., Yang, C., Liu, Z. et al. An implantable Fabry-Pérot pressure sensor fabricated on left ventricular assist device for heart failure. Biomed Microdevices 14, 235–245 (2012). https://doi.org/10.1007/s10544-011-9601-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9601-z

Keywords

Navigation