Skip to main content
Log in

A plastic, disposable microfluidic flow cell for coupled on-chip PCR and microarray detection of infectious agents

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Clinical laboratories are recognizing the importance of implementing sensitive and specific molecular diagnostic tests. However, widespread adoption of these tests requires simplified workflows without requiring expensive supporting instrumentation. To enable microarray-based analysis to meet these requirements, we describe a valveless flow cell for disposable use that supports PCR coupled with microarray hybridization in the same chamber. The flow cell assembly consists simply of double-faced tape, a plastic microarray substrate, an absorbent, and a commercially-available hydrophilic thin film. The simple construction lends itself to low-cost and ease of manufacturing, yet several features reduce the complexity of the standard microarray workflow. First, there is no requirement for custom instrumentation. Second, the hydrophilic thin film allows uniform filling of a microfluidic chamber. Third, a geometric capillary stop design confines liquid to the microarray chamber during PCR, and thus eliminates the need for a valve or hydrophobic surface treatment. And fourth, imbibition drives the uniform removal of liquid reagents from the array chamber. Three hundred genomic copies of methicillin-resistant Staphylococcus aureus (MRSA) are detected in a flow cell with gel drop microarrays printed on an unmodified plastic substrate. This sensitivity is shown to be comparable to conventional methods (i.e., PCR in a tube, with separate hybridization in a microarray chamber, where amplicon is exposed to the workspace before and after hybridization). However, the flow cell combines these multiple steps into a simple, compact workflow without the need for complex valves or custom instrumentation and is less susceptible to contamination of the workspace than conventional methods because the amplicon is confined to the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • M. Burns, B. Johnson, S. Brahmasandra, K. Handique, Science 282, 484 (1998)

    Article  Google Scholar 

  • A. Castley, M. Higgins, J. Ivey, C. Mamotte, D.C. Sayer, F.T. Christiansen, Clin. Chem. 51, 2025 (2005)

    Article  Google Scholar 

  • Z. Chen, J. Wang, S. Qian, H.H. Bau, Lab. Chip 5, 1277 (2005)

    Article  Google Scholar 

  • M. Dong, I. Chatzis, J. Colloid Interface Sci. 172, 278 (1995)

    Article  Google Scholar 

  • Y. Feng, Z. Zhou, X. Ye, J. Xiong, Sens. Actuators A 138, 108 (2003)

    Google Scholar 

  • A.K. Henning, Aerospace Conference. Proc. IEEE, Colorado, 471 (1998)

  • M. Kohl, D. Dittmann, E. Quandt, B. Winzek, Sens. Actuators A 83, 214 (2000)

    Article  Google Scholar 

  • T.P. Liao, P. Chung, JISE 17, 713 (2001)

    Google Scholar 

  • Y. Liu, C.B. Rauch, R.L. Stevens, R. Lenigk, J. Yang, D.B. Rhine et al., Anal. Chem. 74, 3063 (2002)

    Article  Google Scholar 

  • R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Anal. Chem. 76, 1824 (2004)

    Article  Google Scholar 

  • M. Madou, L. Lee, S. Daunert, S. Lai, C. Shih, Biomed. Microdevices 3, 245 (2001)

    Article  Google Scholar 

  • D. Mark, T. Metz, S. Haeberle, S. Lutz, J. Ducr, R. Zengerleab, F. von Stettenab, Lab. Chip 9, 3599 (2009)

    Article  Google Scholar 

  • R. Pal, M. Yang, B.N. Johnson, D.T. Burke, M.A. Burns, Anal. Chem. 76, 3740 (2004)

    Article  Google Scholar 

  • C.M. Pemble, B.C. Towe, Sens. Actuators A 77, 145 (1999)

    Article  Google Scholar 

  • A.C. Richards Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y. Li, M.J. Cima, R. Langer, Proc. IEEE, 92 (2004)

  • A. Rubina, E.I. Dementieva, A.A. Stomakhin, E.L. Darii, S.V. Pan’kov, V.E. Barsky, S.M. Ivanov, E.V. Konovalova, A.D. Mirzabekov, Biotechniques 34, 1008 (2003)

    Google Scholar 

  • A. Saeed et al., Biotechniques 34, 374 (2003)

    Google Scholar 

  • E. Schäffer, P. Wong, Phys. Rev. Lett. 80, 3069 (1998)

    Article  Google Scholar 

  • A.E. Sgro, P.B. Allen, D.T. Chiu, Anal. Chem. 79, 4845 (2007)

    Article  Google Scholar 

  • T. Thorsen, S.J. Maerkl, S.R. Quake, Science 298, 580 (2002)

    Article  Google Scholar 

  • TIFF Revision 6.0. (1992)

  • A.V. Vasiliskov, E.N. Timofeev, S.A. Surzhikov, A.L. Drobyshev, V.V. Shick, A.D. Mirzabekov, Biotechniques 27, 592 (1999)

    Google Scholar 

  • J. Wang, Z.Y. Chen, M. Mauk, K.S. Hong, M.Y. Li, S. Yang et al., Biomed. Microdevices 7, 313 (2005)

    Article  Google Scholar 

  • M. Weislogel, S. Lichter, J. Fluid Mech. 373, 349 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1938)

    Article  Google Scholar 

  • X. Yang, C. Grosjean, Y.-C. Tai, C.-M. Ho, Proc. IEEE (MEMS ‘97), Japan, 114 (1997)

  • C. Zhang, D. Xing, Nucleic Acids Res. 35, 4223 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank partial support from the National Institutes of Health (grant no. 1 RO1 AI59517). Some of the development of the flow cell design was supported by Award No. 2007-DN-BX-K145, awarded by the National Institute of Justice, Office of Justice Programs, U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect those of the Department of Justice. The authors also wish to acknowledge the helpful insights gained from attendance at Math-in-Industry Workshop, Claremont Colleges 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Cooney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooney, C.G., Sipes, D., Thakore, N. et al. A plastic, disposable microfluidic flow cell for coupled on-chip PCR and microarray detection of infectious agents. Biomed Microdevices 14, 45–53 (2012). https://doi.org/10.1007/s10544-011-9584-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-011-9584-9

Keywords

Navigation