Skip to main content
Log in

A 3-D microfluidic combinatorial cell array

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

We present the development of a three-dimensional (3-D) combinatorial cell culture array device featured with integrated three-input, eight-output combinatorial mixer and cell culture chambers. The device is designed for cell-based screening of multiple compounds simultaneously on a microfluidic platform. The final assembled device is composed of a porous membrane integrated in between a Parylene 3-D microfluidic chip and a PDMS microfluidic chip. The membrane turned the cell culture chambers into two-level configuration to facilitate cell loading and to maintain cells in a diffusion dominated space during device operation. Experimentally, we first characterized the combined compound concentration profile at each chamber using a fluorescence method. We then successfully demonstrated the functionality of the quantitative cell-based assay by culturing B35 rat neuronal cells on this device and screening the ability of three compounds (1,5-dihydroxyisoquinoline, deferoxamine, and 3-aminobenzoic acid) to attenuate cell death caused by cytotoxic hydrogen peroxide. In another experiment, we assayed for the combinatorial effects of three chemotherapeutic compound exposures (vinorelbine, paclitaxel, and γ-linolenic acid) on human breast cancer cells, MDA-MB-231. The same technology will enable the construction of inexpensive lab-on-a-chip devices with high-input combinatorial mixer for performing high-throughput cell-based assay and highly parallel and combinatorial chemical or biochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • I. Barbulovic-Nad, H. Yang, P.S. Park, A.R. Wheeler, Digital microfluidics for cell-based assays. Lab Chip 8, 519–526 (2008)

    Article  Google Scholar 

  • D.J. Beebe, G.A. Mensing, G.M. Walker, Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Article  Google Scholar 

  • J. Bowes, J. Piper, C. Thiemermann, Inhibitors of the activity of poly (ADP-ribose) synthetase reduce the cell death caused by hydrogen peroxide in human cardiac myoblasts. Br. J. Pharmacol. 124, 1760–1766 (1998)

    Article  Google Scholar 

  • A.Y. Chang, G.C. Garrow, Pilot study of vinorelbine (Navelbine) and paclitaxel (Taxol) in patients with refractory breast cancer and lung cancer. Semin. Oncol. 22, 66–70 (1995)

    Google Scholar 

  • J.E. Dancey, H.X. Chen, Strategies for optimizing combinations of molecularly targeted anticancer agents. Nat. Rev. Drug Discov. 5, 649–659 (2006)

    Article  Google Scholar 

  • A. Dove, Drug screening—beyond the bottleneck. Nat. Biotechnol. 17, 859–863 (1999)

    Article  Google Scholar 

  • J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature 442, 403–411 (2006)

    Article  Google Scholar 

  • R.K. Gregory, I.E. Smith, Vinorelbine—a clinical review. Br. J. Cancer 82, 1907–1913 (2000)

    Article  Google Scholar 

  • B.-H. Jo, L.M. Van Lerberghe, K.M. Motsegood, D.J. Beebe, Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. J. Microelectromech. Syst. 9, 76–81 (2000)

    Article  Google Scholar 

  • Y. Kikutani, T. Horiuchi, K. Uchiyama, H. Hisamoto, M. Tokeshi, T. Kitamori, Glass microchip with three-dimensional microchannel network for 2 × 2 parallel synthesis. Lab Chip 2, 188–192 (2002)

    Article  Google Scholar 

  • L. Kim, Y.-C. Toh, J. Voldman, H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7, 681–694 (2007)

    Article  Google Scholar 

  • K.R. King, S. Wang, D. Irimia, A. Jayaraman, M. Toner, M.L. Yarmush, A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7, 77–85 (2007)

    Article  Google Scholar 

  • P.J. Lee, P.J. Hung, V.M. Rao, L.P. Lee, Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol. Bioeng. 94, 5–14 (2006)

    Article  Google Scholar 

  • M.C. Liu, D. Ho, Y.-C. Tai, Monolithic fabrication of three-dimensional microfluidic networks for constructing cell culture array with an integrated combinatorial mixer. Sens. Actuators, B 129, 826–833 (2008)

    Article  Google Scholar 

  • H. Lu, L.Y. Koo, W.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Microfluidic shear devices for quantitative analysis of cell adhesion. Anal. Chem. 76, 5257–5264 (2004)

    Article  Google Scholar 

  • B. Ma, G. Zhang, J. Qin, B. Lin, Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device. Lab Chip 9, 232–238 (2009)

    Article  Google Scholar 

  • J.A. Menéndez, M. del Mar Barbacid, S. Montero, E. Sevilla, E. Escrich, M. Solanas, H. Cortés-Funes, R. Colomer, Effects of gamma-linolenic acid and oleic acid on paclitaxel cytotoxicity in human breast cancer cells. Eur. J. Cancer 37, 402–413 (2001)

    Article  Google Scholar 

  • J.A. Menéndez, S. Ropero, M. del Mar Barbacid, S. Montero, M. Solanas, E. Escrich, H. Cortés-Funes, R. Colomer, Synergistic interaction between vinorelbine and gamma-linolenic acid in breast cancer cells. Breast Cancer Res. Treat. 72, 203–219 (2002)

    Article  Google Scholar 

  • S.J. Morrison, N.M. Shah, D.J. Anderson, Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997)

    Article  Google Scholar 

  • C. Neils, Z. Tyree, B. Finlayson, A. Folch, Combinatorial mixing of microfluidic streams. Lab Chip 4, 342–350 (2004)

    Article  Google Scholar 

  • R.J. Pomerantz, D.L. Horn, Twenty years of therapy for HIV-1 infection. Nat. Med. 9, 867–873 (2003)

    Article  Google Scholar 

  • A. Prokop, Z. Prokop, D. Schaffer, E. Kozlov, J. Wikswo, D. Cliffel, F. Baudenbacher, NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale. Biomed. Microdevices 6, 325–339 (2004)

    Article  Google Scholar 

  • E.K. Rowinsky, R.C. Donehower, Paclitaxel (Taxol). N Engl J. Med. 332, 1004–1014 (1995)

    Article  Google Scholar 

  • C.L. Sawyers, Cancer: mixing cocktails. Nature 449, 993–996 (2007)

    Article  Google Scholar 

  • R.A. Wagner, R. Tabibiazar, A. Liao, T. Quertermous, Genome-wide expression dynamics during mouse embryonic development reveal similarities to Drosophila development. Dev. Biol. 288, 595–611 (2005)

    Article  Google Scholar 

  • J.A. Walisser, R.L. Thies, Poly(ADP-Ribose) polymerase inhibition in oxidant-stressed endothelial cells prevents oncosis and permits caspase activation and apoptosis. Exp. Cell Res. 251, 401–413 (1999)

    Article  Google Scholar 

  • Z. Wang, M.-C. Kim, M. Marquez, T. Thorsen, High-density microfluidic arrays for cell cytotoxicity analysis. Lab Chip 7, 740–745 (2007)

    Article  Google Scholar 

  • D.S. Warner, H. Sheng, I. Batinić-Haberle, Oxidants, antioxidants and the ischemic brain. J. Exp. Biol. 207, 3221–3231 (2004)

    Article  Google Scholar 

  • J. Xie, Y. Miao, J. Shih, Y.-C. Tai, T.D. Lee, Microfluidic platform for liquid chromatography—tandem mass spectrometry analyses of complex peptide mixtures. Anal. Chem. 77, 6947–6953 (2005)

    Article  Google Scholar 

  • S. Zheng, M. Liu, Y.-C. Tai, Micro coulter counters with platinum black electroplated electrodes for human blood cell sensing. Biomed. Microdevices 10, 221–231 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Center for Embedded Network Sensing (CCR-0120778). The authors would like to thank Trevor Roper and members of the Caltech Micromachining Laboratory for fabrication assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike C. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M.C., Tai, YC. A 3-D microfluidic combinatorial cell array. Biomed Microdevices 13, 191–201 (2011). https://doi.org/10.1007/s10544-010-9484-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9484-4

Keywords

Navigation