Skip to main content
Log in

Mitochondria-targeting photosensitizer-encapsulated amorphous nanocage as a bimodal reagent for drug delivery and biodiagnose in vitro

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The use of ceramic nano-carriers containing anti-cancer drugs for targeted delivery that span both fundamental and applied research has attracted the interest of the scientific community. In this paper, a hydrophobic photodynamic therapy drug, hypocrellin A (HA), was successfully encapsulated in water-soluble amorphous silica nanocage (HANC) by an improved sol-gel method. These nanocages are of ultrasmall size, highly monodispersed, stable in aqueous suspension, and retain the optical properties of HA. Moreover, these nanocages can be effectively delivered, subsequently taken up by cancer cells and finally targeted to mitochondria. In addition, incubation time dependent photodynamic efficacy difference between HANC and HA was investigated for the first time. Especially, the nanocages, owning extremely high stable fluorescence comparing with free HA, also have potentials as efficient probes for optical biodiagnose in vitro. All these properties of HANC could possibly make it especially promising to be used as a bimodal reagent for photodynamic therapy and biodiagnose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • A. Aashees, J.P. Shukla, Ultrasonics 41, 477 (2003)

    Article  Google Scholar 

  • B.S. Andersson, T.Y. Aw, D.P. Jones, Am. J. Physiol. 252, 349 (1987)

    Google Scholar 

  • K. Baba, H.E. Pudavar, I. Roy, T.Y. Ohulchanskyy, Y.H. Chen, R.K. Pandey et al., Mol. Pharmaceutics. 4, 289 (2007)

    Article  Google Scholar 

  • J. Cao, Y. Liu, L. Jia, H.M. Zhou, Y. Kong, G. Yang et al., Free Radical Biol. Med. 43, 968 (2007)

    Article  Google Scholar 

  • Y.F. Chen, Z. Rosenzweig, Anal. Chem. 89, 142 (2008)

    Google Scholar 

  • Y.H. Chen, A. Gryshuk, S. Achilefu, T. Ohulchansky, W. Potter, T.X. Zhong et al., Bioconjugate Chem. 16, 1264 (2005)

    Article  Google Scholar 

  • T.H. Chung, S.H. Wu, M. Yao, C.W. Lu, Y.S. Lin, Y. Hung et al., Biomaterials 28, 295 (2007)

    Google Scholar 

  • G. Ciapettia, D. Granchia, L. Savarinoa, E. Cennia, E. Magrinia, N. Baldinib et al., Biomaterials 23, 617 (2002)

    Article  Google Scholar 

  • Z.J. Diwu, J.W. Lown, J. Photochem. Photobio. 52, 609 (1990)

    Article  Google Scholar 

  • Y. Doi, A.M.A. Ikeda, N. Mai, S. Tamami, O. Takuya, Chem. Eur. J. 14, 8892 (2008)

    Article  Google Scholar 

  • T.J. Dougherty, C.J. Gomer, B.W. Henderson, G. Jori, D. Kessel, M. Korbelik et al., J. Natl. Cancer Inst. 90, 889 (1998)

    Article  Google Scholar 

  • X.Z. Du, Y.Q. Liang, S. Langmuir. 16, 3422 (2000)

    Article  Google Scholar 

  • S. Gianrico, D.A. Vincenzo, C. Claudia, S. Gottfried, S. Helmut, R. Sandro, Biomaterials 27, 1803 (2006)

    Article  Google Scholar 

  • A.J. Gomes, L.O. Lunardi, J.M. Marchetti, C.N. Lunardi, A.C. Tedesco, Drug Deli. 12, 159 (2005)

    Article  Google Scholar 

  • J.B. Hudson, J. Zhou, J. Chen, L. Harris, L. Yip, G.H.N. Towers, J. Photochem. Photobio. 60, 253 (1997)

    Article  Google Scholar 

  • T.Y. Hulchanskyy, I. Roy, L.N. Goswami, Y. Chen, E.J. Bergey, R.K. Pandey, A.R. Oseroff, P.N. Prasad, Nano Lett. 7, 2835 (2007)

    Article  Google Scholar 

  • Z. Jian, F. Yi, L. Dong, N. Kazik, K. Nowaczyk, R.Y. Zhao et al., Nano Lett. 8, 1179 (2008)

    Article  Google Scholar 

  • L.J. Jiang, Chin. Sci. Bulle. 35, 1608 (1990)

    Google Scholar 

  • F.P. Kathleen, H.C. Esther, Trends Biotechnol. 26, 552–558 (2008)

    Article  Google Scholar 

  • A. Khdair, B. Gerard, H. Handa, G.Z. Mao, M.P.V. Shekhar, J. Panyam, Mol. Pharmaceutics. 5, 795–807 (2008)

    Article  Google Scholar 

  • S. Kim, T.Y. Ohulchanskyy, H.E. Pudavar, R.K. Pandey, P.N. Prasad, J. Am. Chem. Soc. 129, 2669–2675 (2007)

    Article  Google Scholar 

  • B.A. Lindig, M.A.J. Rodgers, A.P. Schaap, J. Am. Chem. Soc. 102, 5590 (1980)

    Article  Google Scholar 

  • G.G. Miller, A.M. Ballangrud, O. Barajas, Z. Xiao, J. Tulip, J.W. Lown et al., J. Photochem. Photobio. 65, 714 (1997)

    Article  Google Scholar 

  • R.L. Morris, K. Azizuddin, M. Lam, J. Berlin, A.L. Nieminen, M.E. Kenney et al., Cancer Res. 63, 5194 (2003)

    Google Scholar 

  • M. Mosharraf, C. Nystrom, Int. J. Pharm. 122, 35 (1995)

    Article  Google Scholar 

  • T. Mosmann, J. Immunol. Methods 65, 55 (1983)

    Article  Google Scholar 

  • R.H. Muller, C. Jacobs, O. Kayser, Adv. Drug Deliv. Rev. 47, 3 (2001)

    Article  Google Scholar 

  • J.W. Petrich, Int. Rev. Phys. Chem. 19, 479 (2000)

    Article  Google Scholar 

  • F. Pinaud, X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li et al., Biomaterials 27, 1679 (2008)

    Article  Google Scholar 

  • M.I. Porn-Ares, S.C. Chow, J.P. Slotte, S. Orrenius, Exp. Cell Res. 235, 48 (1997)

    Article  Google Scholar 

  • I. Roy, T.Y. Ohulchanskyy, H.E. Pudavar, E.J. Bergey, A.R. Oseroff, J. Morgan et al., J. Am. Chem. Soc. 125, 7860 (2003)

    Article  Google Scholar 

  • I.I. Slowing, B.G. Trewyn, V.S. Lin, J. Am. Chem. Soc. 129, 8845 (2007)

    Article  Google Scholar 

  • S. Sortino, A. Mazzaglia, L.M. Scolaro, F.M. Merlo, V. Valveri, M.T. Sciortino, Biomaterials 27, 4256 (2006)

    Article  Google Scholar 

  • D.B. Tada, L.L. Vono, E.L. Duarte, R. Itri, P.K. Kiyohara, M.S. Baptista et al., Langmuir. 23, 8194 (2007)

    Article  Google Scholar 

  • Z. Tamotsu, N. Hiroyasu, T. Naofumi, S. Masafumi, S. Kohei, M. Mizuo, J. Mater. Sci. 43, 5325 (2008)

    Article  Google Scholar 

  • T. Tanaka, P. Decuzzi, M. Cristofanilli, J.H. Sakamoto, E. Tasciotti, F.M. Robertson, M. Ferrari, Biomed. Microdevices 11, 49 (2009)

    Article  Google Scholar 

  • W. Tang, H. Xu, R. Kopelman, M.A. Philbert, J. Photochem. Photobiol. 81, 242 (2005)

    Article  Google Scholar 

  • Y.W. Yang, Y.J.H. Paul, Biomaterials 29, 2516 (2008)

    Article  Google Scholar 

  • Y.M. Zhao, L.N. Sun, H.Y. Zhou, X.L. Wang, Neurosci. Lett. 398, 22 (2006)

    Article  Google Scholar 

  • J.H. Zhou, L. Zhou, C. Dong, Y.Y. Feng, S.H. Wei, J. Shen et al., Mater. Lett. 62, 2910 (2008)

    Article  Google Scholar 

  • L. Zhou, J.H. Zhou, C. Dong, F. Ma, S.H. Wei, J. Shen, Dyes Pigm. 82, 90 (2009)

    Article  Google Scholar 

  • S.G. Zhuang, M.C. Lynch, I. Kochevar, Exp. Cell Res. 250, 203 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 20603018), the Ministry of Education key project of China (No. 208047) and the key laboratory of photochemical conversion and optoelectronic materials, TIPC, CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Hong Zhou or Bo-Yang Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Liu, JH., Ma, F. et al. Mitochondria-targeting photosensitizer-encapsulated amorphous nanocage as a bimodal reagent for drug delivery and biodiagnose in vitro . Biomed Microdevices 12, 655–663 (2010). https://doi.org/10.1007/s10544-010-9418-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9418-1

Keywords

Navigation