Skip to main content

Advertisement

Log in

A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper, microfluidic devices containing microwells that enabled cell docking were investigated. We theoretically assessed the effect of geometry on recirculation areas and wall shear stress patterns within microwells and studied the relationship between the computational predictions and experimental cell docking. We used microchannels with 150 μm diameter microwells that had either 20 or 80 μm thickness. Flow within 80 μm deep microwells was subject to extensive recirculation areas and low shear stresses (<0.5 mPa) near the well base; whilst these were only presented within a 10 μm peripheral ring in 20 μm thick microwells. We also experimentally demonstrated that cell docking was significantly higher (p < 0.01) in 80 μm thick microwells as compared to 20 μm thick microwells. Finally, a computational tool which correlated physical and geometrical parameters of microwells with their fluid dynamic environment was developed and was also experimentally confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, N.L. Jeon, Lab Chip 5, 401 (2005)

    Article  Google Scholar 

  • S.C. Daxini, J.W. Nichol, A.L. Sieminski, G. Smith, K.J. Gooch, V.P. Shastri, Biorheology 43(1), 45 (2006)

    Google Scholar 

  • D. Di Carlo, L.P. Lee, Anal. Chem. 78, 7918 (2006)

    Article  Google Scholar 

  • C. Fidkowski, M.R. Kaazempur-Mofrad, J. Borenstein, J.P. Vacanti, R. Langer, Y. Wang, Tissue Eng. 11, 302 (2005)

    Article  Google Scholar 

  • D.P. Gaver 3rd, S.M. Kute, Biophys. J. 75, 721 (1998)

    Article  Google Scholar 

  • J.V. Green, T. Kniazeva, M. Abedi, D.S. Sokhey, M.E. Taslim, S.K. Murthy, Lab Chip 9(5), 677 (2009)

    Article  Google Scholar 

  • J.M. Karp, J. Yeh, G. Eng et al., Lab Chip 7(6), 786 (2007)

    Article  Google Scholar 

  • M. Khabiry, B.G. Chung, M.J. Hancock, H.C. Soundararajan, Y. Du, D. Cropek, W.G. Lee, A. Khademhosseini, Small 5(10), 1186–1194 (2009)

    Google Scholar 

  • A. Khademhosseini, K.Y. Suh, S. Jon, G. Chen, G. Eng, J. Yeh, R. Langer, Anal. Chem. 76, 3675 (2004)

    Article  Google Scholar 

  • A. Khademhosseini, J. Yeh, G. Eng et al., Lab Chip 5(12), 1380 (2005)

    Article  Google Scholar 

  • A. Khademhosseini, L. Ferreira, J. Blumling 3rd et al., Biomaterials 27(36), 5968 (2006a)

    Article  Google Scholar 

  • A. Khademhosseini, R. Langer, J. Borenstein et al., Proc. Natl. Acad. Sci. U. S. A. 103(8), 2480 (2006b)

    Article  Google Scholar 

  • W.G. Koh, A. Revzin, M.V. Pishko, Langmuir 18, 2459 (2002)

    Article  Google Scholar 

  • N. Korin, A. Bransky, M. Khoury, U. Dinnar, S. Levenberg, Biotechnol. Bioeng. 102(4), 1222 (2009)

    Article  Google Scholar 

  • A. Manbachi, S. Shrivastava, M. Cioffi, B.G. Chung, M. Moretti, U. Demirci, M. Yliperttula, A. Khademhosseini, Lab Chip 8(5), 747 (2008)

    Article  Google Scholar 

  • K. Mehta, J.J. Linderman, Biotechnol. Bioeng. 94(3), 596 (2006)

    Article  Google Scholar 

  • J. Park, F. Berthiaume, M. Toner, M.L. Yarmush, A.W. Tilles, Biotechnol. Bioeng. 90(5), 632 (2005)

    Article  Google Scholar 

  • S.K. Sia, G.M. Whitesides, Electrophoresis 24(21), 3563 (2003)

    Article  Google Scholar 

  • Z. Wang, M.C. Kim, M. Marquez, T. Thorsen, Lab Chip 7(6), 740 (2007)

    Article  Google Scholar 

  • D.B. Weibel, G.M. Whitesides, Curr. Opin. Chem. Biol. 10(6), 584 (2006)

    Article  Google Scholar 

  • G.M. Whitesides, Nature 442(7101), 368 (2006)

    Article  Google Scholar 

  • G.M. Whitesides, E. Ostuni, S. Takayama et al., Annu. Rev. Biomed. Eng. 3, 335 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

M.C. and M.M. were supported by the Progetto Roberto Rocca Collaboration. The Khademhosseini group is funded by the US Army Engineer Research and Development Center, the Institute for Soldier Nanotechnology, the National Science Foundation and the National Institute of Health grants (HL092836, EB009196 and DE019024). B. G. Chung was partially supported by the National Research Foundation of Korea (Grant Number R11-2008-044-01001-0) and Korea Industrial Technology Foundation (KOTEF) through the Human Resource Training Project for Strategic Technology. The authors thank Professor Marjo Yliperttulaa and Professor Edward Hæggström for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margherita Cioffi.

Additional information

Margherita Cioffi and Matteo Moretti contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cioffi, M., Moretti, M., Manbachi, A. et al. A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking. Biomed Microdevices 12, 619–626 (2010). https://doi.org/10.1007/s10544-010-9414-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9414-5

Keywords

Navigation