Skip to main content
Log in

Implications of available design space for identification of non-immunogenic protein therapeutics

  • Invited Perspective
  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Immunogenicity/antibody responses are major issues for parenteral proteins and nanotherapeutics (nanovectors, diagnostics, theranostics, etc.), and robust antibody responses require T-helper epitopes. T-helper epitopes consist of specific amino acids at specific positions (anchor positions) in immunogens which contact the major histocompatibility complex (MHC), provide most of the energy for MHC binding and constitute the binding motif for the corresponding MHC alleles. We developed an algorithm that considers motifs to design vaccines lacking unwanted T-cell epitopes, and found numbers of such vaccines can be astronomical (Lee et al. 2009). The algorithm can be used to design reduced immunogenicity proteins, and numbers of predicted proteins are also immense. Reducing T-helper epitope content reduces protein immunogenicity, but the depth of mutagensis needed to eliminate immunogenicity is commonly assumed to be too great for retention of protein bioactivity. However, very deep, but successful substitution, insertion and deletion mutagenesis have been reported. These reports and design space the algorithm reveals suggest development of non-immunogenic therapeutics might be more feasible than commonly assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. Akanuma, T. Kigawa, S. Yokoyama, Combinatorial mutagenesis to restrict amino acid usage in an enzyme to a reduced set. Proc. Natl Acad. Sci. USA 99(21), 13549–53 (2002)

    Article  Google Scholar 

  • K.D. Bhalerao et al., Nanodevice design through the functional abstraction of biological macromolecules. App. Phys. Lett. 87, 14587–14590 (2005)

    Article  Google Scholar 

  • B.C. Braden et al., X-ray crystal structure of an anti-Buckminsterfullerene antibody fab fragment: biomolecular recognition of C(60). Proc. Natl Acad. Sci. USA 97(22), 12193–7 (2000)

    Article  Google Scholar 

  • B.M. Brown, R.T. Sauer, Tolerance of Arc repressor to multiple-alanine substitutions. Proc. Natl Acad. Sci. USA 96(5), 1983–8 (1999)

    Article  Google Scholar 

  • B.-X. Chen et al., Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc. Natl Acad. Sci. USA 95, 10809–10813 (1998)

    Article  Google Scholar 

  • A. Chirino, M. Ary, S. Marshall, Minimizing the immunogenicity of protein therapeutics. Drug Discov. Today 9, 82–90 (2004)

    Article  Google Scholar 

  • B.C. Cunningham, J.A. Wells, Minimized proteins. Curr. Opin. Struct. Biol. 7(4), 457–62 (1997)

    Article  Google Scholar 

  • P. Debbage, Targeted drugs and nanomedicine: present and future. Curr. Pharm. Des. 15(2), 153–72 (2009)

    Article  Google Scholar 

  • P. Debbage, W. Jaschke, Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem. Cell Biol. 130(5), 845–75 (2008)

    Article  Google Scholar 

  • R.J. Fox, G.W. Huisman, Enzyme optimization: moving from blind evolution to statistical exploration of sequence-function space. Trends Biotechnol. 26(3), 132–8 (2008)

    Article  Google Scholar 

  • B.K. Klein et al., Use of combinatorial mutagenesis to select for multiply substituted human interleukin-3 variants with improved pharmacologic properties. Exp. Hematol. 27(12), 1746–56 (1999)

    Article  Google Scholar 

  • E. Koren, L.A. Zuckerman, A.R. Mire-Sluis, Immune responses to therapeutic proteins in humans–clinical significance, assessment and prediction. Curr. Pharm. Biotechnol. 3(4), 349–60 (2002)

    Article  Google Scholar 

  • Y. Kuroda, P.S. Kim, Folding of bovine pancreatic trypsin inhibitor (BPTI) variants in which almost half the residues are alanine. J. Mol. Biol. 298(3), 493–501 (2000)

    Article  Google Scholar 

  • S.C. Lee et al., Recognition properties of antibodies to PAMAM dendrimers and their use in immune detection of dendrimers. Biomed. Microdevices: Biomems and Biomedical Nanotechnology 3, 51–57 (2001a)

    Google Scholar 

  • S.C. Lee et al., Phage display mutagenesis of the chimeric dual cytokine receptor agonist myelopoietin. Leukemia 15, 1277–1285 (2001b)

    Article  Google Scholar 

  • S.C. Lee et al., Biochemical and immunological properties of cytokines conjugated to dendritic polymers. Biomed Microdevices 6(3), 191–202 (2004a)

    Article  Google Scholar 

  • S.C. Lee, K. Bhalerao, M. Ferrari, Object oriented design tools for supramolecular devices and biomedical nanotechnology. N.Y. Acad. Sci. 1013, 1–14 (2004b)

    Article  Google Scholar 

  • S. Lee, M. Reugsegger, P.D. Barnes, B.R. Smith, M. Ferrari, Therapeutic nanodevices. Springer Handbook of Nanotechnology, 2nd Edn (2007) p. 461–504

  • Y. Lee, G. Ferrari, S.C. Lee, Estimating design space avaialable for polyepitopes through consideration of major histocompatibility compmplex binding motifs. Biomedical microdevices, (2009) doi:10.1007/s10544-009-9376-7

  • C. Mateo et al., Removal of amphipathic epitopes from genetically engineered antibodies: production of modified immunoglobulins with reduced immunogenicity. Hybridoma 19(6), 463–71 (2000)

    Article  Google Scholar 

  • A. Nijdam, T. Nicholson III, J.P. Shapiro, B.R. Smith, J.T. Heverhagen, P. Schmalbrock, M.V. Knopp, A. Kebbel, D. Wang, S.C. Lee, Nanoparticulate iron oxide contrast agents for untargeted and targeted Cardiovascular magnetic resonance imaging. Curr. Nanosci. 5, 88–102 (2009)

    Article  Google Scholar 

  • P.O. Olins et al., Saturation mutagenesis of human interleukin-3. J. Biol. Chem. 270(40), 23754–60 (1995)

    Article  Google Scholar 

  • M. Onda, Reducing the immunogenicity of protein therapeutics. Curr. Drug Targets 10(2), 131–9 (2009)

    Article  Google Scholar 

  • D.S. Riddle et al., Functional rapidly folding proteins from simplified amino acid sequences. Nat. Struct. Biol. 4(10), 805–9 (1997)

    Article  Google Scholar 

  • L. Roque-Navarro et al., Humanization of predicted T-cell epitopes reduces the immunogenicity of chimeric antibodies: new evidence supporting a simple method. Hybrid Hybridomics 22(4), 245–57 (2003)

    Article  Google Scholar 

  • S.A. Ross, P.R. Srinivas, A.J. Clifford, S.C. Lee, M.A. Philbert, R.L. Hetich, New technologies for nutrition research. J. Nutr. 134, 681–685 (2004)

    Google Scholar 

  • J.H. Sakamoto, B.R. Smith, B. Xie, S.I. Rokhlin, S.C. Lee, M. Ferrari, The molecular analysis of breast cancer utilizing targeted nanoparticle ultrasound contrast agents. Tech. Canc. Res. Treat. 4, 627–636 (2005)

    Google Scholar 

  • H. Schellekens, Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin. Ther. 24(11), 1720–1740 (2002). discussion 1719

    Article  Google Scholar 

  • D. Shortle, J. Sondek, The emerging role of insertions and deletions in protein engineering. Curr. Opin. Biotechnol. 6(4), 387–93 (1995)

    Article  Google Scholar 

  • B.R. Smith, J. Heverhagen, M. Knopp, P. Schmalbrock, J. Shapiro, M. Shiomi, N. Moldovan, M. Ferrari, S.C. Lee, Magnetic Resonance Imaging of atherosclerosis in vivo using biochemically targeted ultrasmall superparamagnetic iron oxide particles (SPIONs). Biomed. Microdevices 9, 719–728 (2007)

    Article  Google Scholar 

  • J. Sondek, D. Shortle, Accommodation of single amino acid insertions by the native state of staphylococcal nuclease. Proteins 7(4), 299–305 (1990)

    Article  Google Scholar 

  • J. Sondek, D. Shortle, A general strategy for random insertion and substitution mutagenesis: substoichiometric coupling of trinucleotide phosphoramidites. Proc. Natl Acad. Sci. USA 89(8), 3581–5 (1992a)

    Article  Google Scholar 

  • J. Sondek, D. Shortle, Structural and energetic differences between insertions and substitutions in staphylococcal nuclease. Proteins 13(2), 132–40 (1992b)

    Article  Google Scholar 

  • S. Tangri et al., Rationally engineered proteins or antibodies with absent or reduced immunogenicity. Curr. Med. Chem. 9(24), 2191–9 (2002)

    Google Scholar 

  • S. Tangri et al., Rationally engineered therapeutic proteins with reduced immunogenicity. J. Immunol. 174(6), 3187–96 (2005)

    Google Scholar 

  • N.J. Turner, Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5(8), 567–73 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Craig Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S.C. Implications of available design space for identification of non-immunogenic protein therapeutics. Biomed Microdevices 12, 283–286 (2010). https://doi.org/10.1007/s10544-009-9383-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9383-8

Keywords

Navigation