Skip to main content
Log in

Automatic microfluidic platform for cell separation and nucleus collection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This study reports a new biochip capable of cell separation and nucleus collection utilizing dielectrophoresis (DEP) forces in a microfluidic system comprising of micropumps and microvalves, operating in an automatic format. DEP forces operated at a low voltage (15 Vp–p) and at a specific frequency (16 MHz) can be used to separate cells in a continuous flow, which can be subsequently collected. In order to transport the cell samples continuously, a serpentine-shape (S-shape) pneumatic micropump device was constructed onto the chip device to drive the samples flow through the microchannel, which was activated by the pressurized air injection. The mixed cell samples were first injected into an inlet reservoir and driven through the DEP electrodes to separate specific samples. Finally, separated cell samples were collected individually in two outlet reservoirs controlled by microvalves. With the same operation principle, the nucleus of the specific cells can be collected after the cell lysis procedure. The pumping rate of the micropump was measured to be 39.8 μl/min at a pressure of 25 psi and a driving frequency of 28 Hz. For the cell separation process, the initial flow rate was 3 μl/min provided by the micropump. A throughput of 240 cells/min can be obtained by using the developed device. The DEP electrode array, microchannels, micropumps and microvalves are integrated on a microfluidic chip using micro-electro-mechanical-systems (MEMS) technology to perform several crucial procedures including cell transportation, separation and collection. The dimensions of the integrated chip device were measured to be 6 × 7 cm. By integrating an S-shape pump and pneumatic microvalves, different cells are automatically transported in the microchannel, separated by the DEP forces, and finally sorted to specific chambers. Experimental data show that viable and non-viable cells (human lung cancer cell, A549-luc-C8) can be successfully separated and collected using the developed microfluidic platform. The separation accuracy, depending on the DEP operating mode used, of the viable and non-viable cells are measured to be 84 and 81%, respectively. In addition, after cell lysis, the nucleus can be also collected using a similar scheme. The developed automatic microfluidic platform is useful for extracting nuclear proteins from living cells. The extracted nuclear proteins are ready for nuclear binding assays or the study of nuclear proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC:

Alternating current

Bio-MEMS:

Bio-micro-electro-mechanical-systems

DEP:

Dielectrophoresis

DMEM:

Dulvecco’s modified eagle medium

DNA:

Deoxyribonucleic acid

EMV:

Electromagnetic valve

ER:

Estrogen nuclear receptor

LIF:

Laser induced fluorescence

LOC:

Lab-on-a-chip

MEMS:

Micro-electro-mechanical-systems

PDMS:

Polydimethylsiloxane

PI:

Propidium iodide

PR:

Photoresist

SEM:

Scanning electron microscope

S-shape:

Serpentine-shape

Vp–p :

Peak-to-peak Voltage

References

  • J.R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, H. Wu, S.H. Whitesides, G.M. Whitesides, Anal. Chem. 72, 3158 (2000)

    Article  Google Scholar 

  • J. Auerswald, H.F. Knapp, Microelectron. Eng. 67–68, 879 (2003)

    Article  Google Scholar 

  • P.A. Auroux, D.R. Reyes, D. Iossifidis, A. Manz, Anal. Chem. 74, 2637 (2002)

    Article  Google Scholar 

  • A.S. Bahaj, A.G. Bailey, in Proceedings of the Industry Applications Society (IEEE) Annual Meeting, Cleveland, OH, 1979, p. 154

  • F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, Proc. Natl. Acad. Sci. U. S. A. 92, 860 (1995)

    Article  Google Scholar 

  • M. Brown, C. Wittwer, Clin. Chem. 46, 1221 (2000)

    Google Scholar 

  • N.H. Chiem, D.J. Harrison, Clin. Chem. 44, 591 (1998)

    Google Scholar 

  • Y.J. Chuang, M.L. Tsai, S.H. Chen, Electrophoresis 27, 4158 (2006)

    Article  Google Scholar 

  • I. Doh, Y.H. Cho, Sens. Actuators A 121, 59 (2005)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)

    Article  Google Scholar 

  • B.S. Edwards, T. Oprea, E.R. Prossnitz, L.A. Sklar, Curr. Opin. Chem. Biol. 8, 392 (2004)

    Article  Google Scholar 

  • L.M. Fu, G.B. Lee, Y.H. Lin, R.J. Yang, IEEE/ASME Trans. Mechatron. 9, 377 (2004)

    Article  Google Scholar 

  • P.R.C. Gascoyne, X.B. Wang, Y. Huang, F.F. Becker, IEEE Trans. Ind. Appl. 33, 670 (1997)

    Article  Google Scholar 

  • C.F. Gonzalez, V.T. Remcho, J. Chromatogr. A 1079, 59 (2005)

    Article  Google Scholar 

  • Y. Huang, R. Holzel, R. Pethig, X.B. Wang, Phys. Med. Biol. 37, 1499 (1992)

    Article  Google Scholar 

  • Y. Huang, K.L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M.J. Heller, J.P. O’Connel, M. Krihak, Anal. Chem. 73, 1549 (2001)

    Article  Google Scholar 

  • K.K. Jaln, Trends Biotechnol. 18, 278 (2000)

    Article  Google Scholar 

  • T.B. Jones, Electromechanics of Particles (Cambridge University Press, New York, 1995)

    Google Scholar 

  • T.B. Jones, IEEE Proc. Nanobiotechnol. 39, 150 (2003)

    Google Scholar 

  • D.J. Laser, J.G. Santiago, J. Micromechanics Microengineering 14, 35 (2004)

    Article  Google Scholar 

  • G.B. Lee, C.H. Lin, S.C. Chang, J. Micromechanics Microengineering 15, 447 (2005)

    Article  Google Scholar 

  • H. Li, R. Bashir, Sens. Actuators B 86, 215 (2002)

    Article  Google Scholar 

  • C.H. Lin, G.B. Lee, B.W. Chang, G.L. Chang, J. Micromechanics Microengineering 12, 590 (2002)

    Article  Google Scholar 

  • A. Manz, D.J. Harrison, J.C. Verpoorte, H. Ludi, H.M. Widmer, in Technical Digest IEEE Transducers ’91, San Francisco, 1990, p. 939

  • G.H. Markx, M.S. Talary, R. Pethig, J. Biotechnol. 32, 29 (1994)

    Article  Google Scholar 

  • H.A. Pohl, J. Appl. Phys. 22, 869 (1951)

    Article  Google Scholar 

  • H.A. Pohl, J. Appl. Phys. 29, 1182 (1958)

    Article  Google Scholar 

  • H.A. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, UK, 1978)

    Google Scholar 

  • R. Raiteri, M. Grattarola, R. Berger, Materials Today 5, 22 (2002)

    Article  Google Scholar 

  • D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Anal. Chem. 74, 2623 (2002)

    Article  Google Scholar 

  • K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto, T. Kitamori, Adv. Drug Deliv. Rev. 55, 379 (2003)

    Article  Google Scholar 

  • M. Rieseberg, C. Kasper, K.F. Reardon, T. Scheper, Appl. Microbiol. Biotechnol. 56, 350 (2001)

    Article  Google Scholar 

  • A. Ring, M. Dowsett, Endocr.-Relat. Cancer 11, 643 (2004)

    Article  Google Scholar 

  • J. Rousselet, G.H. Markx, R. Pethig, Colloids Surf. A 140, 209 (1998)

    Article  Google Scholar 

  • T. Schnelle, T. Müller, G. Gradl, S.G. Shirley, G. Fuhr, Electrophoresis 21, 66 (2000)

    Article  Google Scholar 

  • P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. Warren, H. Bokesch, S. Kenney, M.R. Boyd, J. Natl. Cancer Inst. 82, 1107 (1990)

    Article  Google Scholar 

  • P.L. Tazzari, A. Bontadini, F. Fruet, C. Tassi, F. Ricci, S. Manfroi, R. Conte, Vox Sang. 85, 109 (2003)

    Article  Google Scholar 

  • M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288, 113 (2000)

    Article  Google Scholar 

  • C.H. Wang, G.B. Lee, Biosens. Bioelectron. 21, 419 (2005)

    Article  Google Scholar 

  • C.H. Wang, G.B. Lee, J. Micromechanics Microengineering 16, 341 (2006)

    Article  Google Scholar 

  • X.B. Wang, Y. Huang, P.R.C. Gascoyne, F.F. Becker, R. Holzel, R. Pethig, Biochim. Biophys. Acta 1193, 330 (1994)

    Article  Google Scholar 

  • R.J. Widrow, C.D. Laird, Cytometry 39, 126 (2000)

    Article  Google Scholar 

  • R.J. Widrow, P.S. Rabinovitch, K. Cho, C.D. Laird, Cytometry 27, 250 (1997)

    Article  Google Scholar 

  • S.Y. Yang, S.K. Hsiung, Y.C. Hung, C.M. Chang, T.L. Liao, G.B. Lee, Meas. Sci. Technol. 17, 2001 (2006)

    Article  Google Scholar 

  • R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, Sens. Actuators A 50, 81 (1995)

    Article  Google Scholar 

  • B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel, Adv. Drug Deliv. Rev. 56, 145 (2004)

    Article  Google Scholar 

  • H. Zou, S. Mellon, R.R. Syms, K.E. Tanner, Biomed. Microdevices 8, 353 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided to this study by the National Science Council in Taiwan and by the MOE Program for Promoting Academic Excellence of Universities (EX-91-E-FA09-5-4). Also, the access provided to major fabrication equipment at the Center for Micro/Nano Technology Research, National Cheng Kung University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Bin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, CH., Hsiung, SK., Chen, CY. et al. Automatic microfluidic platform for cell separation and nucleus collection. Biomed Microdevices 9, 533–543 (2007). https://doi.org/10.1007/s10544-007-9061-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9061-7

Keywords

Navigation