Skip to main content
Log in

Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work examines numerous significant process parameters in the solvent-assistant Polymethyl methacrylate (PMMA) bonding scheme and presents two Micro-total-analysis System (μ-TAS) devices generated by adopting the optimal bonding parameters. The process parameters considered were heating temperature, applied loading, duration and solution. The effects of selected process parameters on bonding dimensions loss and strength, and subsequent optimal setting of the parameters were accomplished using Taguchi’s scheme. Additionally, two μ-TAS devices were realized using a static paraffin microvalve and a dynamic diffuser micropump. The PMMA chips were carved using a CO2 laser that patterned device microchannels and microchambers. The operation principles, fabrication processes and experimental performance of the devices are discussed. This bonding technique has numerous benefits, including high bonding strength (240 kgf/cm2) and low dimension loss (2–6%). For comparison, this work also demonstrates that the normal stress of this technology is 2–15 times greater than that of other bonding technologies, including hot embossing, anodic bonding, direct bonding and thermal fusion bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8 Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • I.K. Glasgow, D.J. Beebe, V.E. White, Sensors Mater. 11, 269–278 (1999)

    Google Scholar 

  • J. Kameoka, H.G. Craighead, H. Zhang, J. Henion, Anal. Chem. 73(9), 1935–1941 (2001)

    Article  Google Scholar 

  • H.-K. Keng, Y.-C. Hsu, L.-S. Jang, in 5th IEEE International Conference on Sensors, A3L-F1, Daegu, Korea, 22–25 October 2006

  • J. Kim, X. Xu, Laser-based fabrication of polymer micropump. J. Microlithogr. Microfabr. Microsyst. 3(1), 152–158 (2004)

    Article  Google Scholar 

  • L.J. Kricka, Clin. Chem. 44, 2008–2014 (1998)

    Google Scholar 

  • S. Lai, X. Cao, L.J. Lee, Anal. Chem. 76, 1175–1183 (2004)

    Article  Google Scholar 

  • G.B. Lee, S.H. Chen, Y.H. Lin, Sens. Actuators, B 75, 142–148 (2001)

    Article  Google Scholar 

  • K.F. Lei, S. Ahsan, N. Budraa, W.J. Li, J.D. Mai, Sens. Actuators, A, Phys. 114(2–3), 340–346 (2004)

    Article  Google Scholar 

  • W. Limm, S.H. Hong, Polymer Preprints, 31(2) 613–614 (1990)

    Google Scholar 

  • Y. Liu, Anal. Chem. 73, 4196–4201 (2001)

    Article  Google Scholar 

  • M.P. Martin, D.W. Matson, W.D. Bennett, Proc. SPIE 3515 172–176 (1998)

    Article  Google Scholar 

  • J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, J.M. Electrophoresis 21, 27–40 (2000)

    Article  Google Scholar 

  • G.J. McGraw, R.V. Davalos, J.D. Brazzle, J. Hachman, M.C. Hunter, J. Chames, G.J. Fiechtner, E.B. Cummings, Y. Fintschenko, B.A. Simmons, in Progress in Biomedical Optics and Imaging—Proceedings of SPIE, vol. 5715. Micromachining and Microfabrication Process Technology, vol. X, (2005) pp. 59–68

  • H. Mekaru, T. Yamada, S. Yan, T. Hattori, Microsyst. Technol. 10(10), 682–688 (2004)

    Article  Google Scholar 

  • A. Muck Jr., Anal. Chem. 76, 2290–2297 (2004)

    Article  Google Scholar 

  • S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas, K. Kelly, A. McCandless, K. Lian, J. Goettert, S.A. Soper, Lab Chip 2, 88–95 (2002)

    Article  Google Scholar 

  • D.R. Reyes, D. Iossifidis, P.-A. Auroux, A. Manz, Anal. Chem. 74, 2623–2636 (2002)

    Article  Google Scholar 

  • G. Whitesides, A. Stroock, Phys. Today 54, 42–48 (2001)

    Article  Google Scholar 

  • W. van der Wijngaart, P. Nilsson, P. Enoksson, G. Stemme, H. Andersson, Sens. Actuators, B, Chem. 72(3), 259–265 (2001)

    Article  Google Scholar 

  • A.A. Yussuf, I. Sbarski, J.P. Hayes, M. Solomon, N. Tran, J. Micromechanics Microengineering 15(9), 1692–1699 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council of the Republic of China, Taiwan, for financially supporting this research under Contract No. NSC 95-2212-E-218-055. National Nano Device Laboratories, Center for Micro/Nano Technology Research and Nanotechnology Research Center in Southern Taiwan University of Technology are also commended for fabrication and measurement support. Dr. W. C. Sue from Department of Mechanical Engineering in Southern Taiwan University of Technology is appreciated for kindly providing technical support on bonding strength measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Chu Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, YC., Chen, TY. Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices. Biomed Microdevices 9, 513–522 (2007). https://doi.org/10.1007/s10544-007-9059-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9059-1

Keywords

Navigation