Skip to main content
Log in

Micropatterned surfaces of PDMS as growth templates for HEK 293 cells

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this paper the easy and reliable preparation of precise micropatterns on PDMS surfaces is described and the growth of HEK 293 cells on those patterns during culture over several days is examined. The first patterning approach described is based on soft-lithography and polyelectrolyte multilayer deposition. Two different soft-lithographic techniques are employed for creating surface patterns of PAH, PSS, untreated and oxidized PDMS. The growth behavior of HEK 293 cells is investigated on all the dual combinations of the four surfaces, and decreasing preference of the cells for the surfaces in the order PAH (–NH2) > ox-PDMS (–OH) >> PSS (–SO3 ) > PDMS (–CH3) is revealed. As the second patterning approach a method is introduced, which allows the deposition of gel droplets in a microarray format utilizing differences in the surface wettability. This concept is new and expected to be very useful for various applications. Finally, a speculative explanation for the different cell spreading behavior is provided considering the interplay between individual cell–surface interactions and a permanent cell tractional force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • H. Ai, H. Meng, I. Ichinose, S.A. Jones, D.K. Mills, Y.M. Lvov, X. Qiao, J. Neurosci. Methods 128, 1 (2003)

    Article  Google Scholar 

  • G. Altankov, F. Grinnell, T. Groth, J. Biomed. Mater. Res. 30, 385 (1996)

    Article  Google Scholar 

  • M.L. Amirpour, P. Ghosh, W.M. Lackowski, R.M. Crooks, M.V. Pishko, Anal. Chem. 73, 1560 (2001)

    Article  Google Scholar 

  • C. Boura, P. Menu, E. Payan, C. Picart, J.C. Voegel, S. Muller, J.F. Stoltz, Biomaterials 24, 3521 (2003)

    Article  Google Scholar 

  • R.G. Chapman, E. Ostuni, M.N. Liang, G. Meluleni, E. Kim, L. Yan, G. Pier, H.S. Warren, G.M. Whitesides, Langmuir 17, 1225 (2001)

    Article  Google Scholar 

  • A.S.G. Curtis, J.V. Forrester, P. Clark, J. Cell Sci. 86, 9 (1986)

    Google Scholar 

  • A.S.G. Curtis, J.V. Forrester, C. McInnes, F. Lawrie, J. Cell Biol. 97, 1500 (1983)

    Article  Google Scholar 

  • A.S.G. Curtis, H. McMurray, J. Cell Sci. 86, 25 (1986)

    Google Scholar 

  • G. Decher, Science 277, 1232 (1997)

    Article  Google Scholar 

  • M.N. DeSilva, R. Desai, D.J. Odde, Biomed. Microdevices 6, 219 (2004)

    Article  Google Scholar 

  • Y.F. Dufrene, T.G. Marchal, P.G. Roux, Langmuir 15, 2871 (1999)

    Article  Google Scholar 

  • D.L. Elbert, J.A. Hubbell, Ann. Rev. Mater. Sci. 26, 365 (1996)

    Article  Google Scholar 

  • K. Faid, R. Voicu, M. Bani-Yaghoub, R. Tremblay, G. Mealing, C. Py, R. Barjovanu, Biomed. Microdevices 7, 179 (2005)

    Article  Google Scholar 

  • M. Germain, P. Balaguer, J.C. Nicolas, F. Lopez, J.P. Esteve, G.B. Sukhorukov, M. Winterhalter, H. Richard-Foy, D. Fournier, Biosens. Bioelectron. 21, 1566 (2006)

    Article  Google Scholar 

  • B.T. Ginn, O. Steinbock, Langmuir 19, 8117 (2003)

    Article  Google Scholar 

  • E. Grantcharova-Angelova, Ligand-induced N-terminal proteolysis of the human endothelian B receptor (PhD thesis, FU Berlin, 2005)

  • T.A. Haas, E.F. Plow, Curr. Opin. Cell Biol. 6, 656 (1994)

    Article  Google Scholar 

  • S. Huang, C.S. Chen, D.E. Ingber, Mol. Biol. Cell 9, 3179 (1998)

    Google Scholar 

  • X. Jiang, H. Zheng, S. Gourdin, P.T. Hammond, Langmuir 18, 2607 (2002)

    Article  Google Scholar 

  • R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, G.M. Whitesides, Biomaterials 20, 2363 (1999)

    Article  Google Scholar 

  • R. Kapur, A.S. Rudolph, Exp. Cell Res. 244, 275 (1998)

    Article  Google Scholar 

  • A.J. Khopade, F. Caruso, Langmuir 19, 6219 (2003)

    Article  Google Scholar 

  • T.G. Kooten, H.C. Mei, J.M. Schakenraad, H.J. Busscher, Biofouling 5, 239 (1992)

    Article  Google Scholar 

  • K. Kottke-Marchant, A.A. Veenstra, R.E. Marchant, J. Biomed. Mater. Res. 30, 209 (1996)

    Article  Google Scholar 

  • H.M. Kowalczynska, M. Nowak-Wyrzykowska, Cell Biol. Int. 23, 359 (1999)

    Article  Google Scholar 

  • G. Ladam, C. Gergely, B. Senger, G. Decher, J.C. Voegel, P. Schaaf, F.J.G. Cuisinier, Biomacromolecules 1, 674 (2000)

    Article  Google Scholar 

  • G. Ladam, P. Schaaf, F.J.G. Cuisinier, G. Decher, J.C. Voegel, Langmuir 17, 878 (2001)

    Article  Google Scholar 

  • M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange, M. Sigotluizard, J. Biomed. Mater. Res. 36, 99 (1997)

    Article  Google Scholar 

  • M.A. Lawson, J.E. Barralet, L. Wang, R.M. Shelton, J.T. Triffitt, Tissue Eng. 10, 1480 (2004)

    Google Scholar 

  • S. Lee, J. Vörös, Langmuir 21, 11957 (2005)

    Article  Google Scholar 

  • M.H. Lee, P. Ducheyne, L. Lynch, D. Boettiger, R.J. Composto, Biomaterials 27, 1907 (2006)

    Article  Google Scholar 

  • M.J. Mahoney, R.R. Chen, J. Tan, W.M. Saltzman, Biomaterials 26, 771 (2005)

    Article  Google Scholar 

  • R.A. McAloney, M. Sinyor, V. Dudnik, M.C. Goh, Langmuir 17, 6655 (2001)

    Article  Google Scholar 

  • J.D. Mendelsohn, S.Y. Yang, J. Hiller, A.I. Hochbaum, M.F. Rubner, Biomacromolecules 4, 96 (2003)

    Article  Google Scholar 

  • R. Mikulikova, S. Moritz, T. Gumpenberger, M. Olbrich, C. Romanin, L. Bacakova, V. Svorcik, J. Heitz, Biomaterials 26, 5572 (2005)

    Article  Google Scholar 

  • A.P. Minton, Biophys. Chemist. 86, 239 (2000)

    Article  Google Scholar 

  • J.A. Neff, P.A. Tresco, K.D. Caldwell, Biomaterials 20, 2377 (1999)

    Article  Google Scholar 

  • T.H. Park, M.L. Shuler, Biotechnol. Prog. 19, 243 (2003)

    Article  Google Scholar 

  • N. Patel, R. Padera, G.H.W. Sanders, S.M. Cannizzaro, M.C. Davies, R. Langer, C.J. Roberts, S.J.B. Tendler, P.M. Williams, K.M. Shakesheff, FASEB J. 12, 1447 (1998)

    Google Scholar 

  • R.J. Pelham, Y.L. Wang, Proc. Natl. Acad. Sci. U. S. A. 94, 13661 (1997)

    Article  Google Scholar 

  • E. Poptoshev, B. Schoeler, F. Caruso, Langmuir 20, 829 (2003)

    Article  Google Scholar 

  • D.R. Reyes, E.M. Perruccio, S.P. Becerra, L.E. Locascio, M. Gaitan, Langmuir 20, 8805 (2004)

    Article  Google Scholar 

  • S.W. Rhee, A.M. Taylor, C.H. Tu, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Lab. Chip. 5, 102 (2005)

    Article  Google Scholar 

  • L. Richert, P. Lavalle, D. Vautier, B. Senger, J.F. Stoltz, P. Schaaf, J.C. Voegel, C. Picart, Biomacromolecules 3, 1170 (2002)

    Article  Google Scholar 

  • P. Roach, D. Farrar, C.C. Perry, J. Am. Chem. Soc. 127, 8168 (2005)

    Article  Google Scholar 

  • A.K. Robbins, R.A. Horlick, Biotechniques 25, 240 (1998)

    Google Scholar 

  • D.S. Salloum, S.G. Olenych, T.C.S. Keller, J.B. Schlenoff, Biomacromolecules 6, 161 (2005)

    Article  Google Scholar 

  • C. Satriano, G. Marletta, S. Carnazza, S. Guglielmino, J. Mater. Sci. Mater. Med. 14, 663 (2003)

    Article  Google Scholar 

  • A. Schneider, G. Francius, R. Obeid, P. Schwinté, J. Hemmerlé, B. Frisch, P. Schaaf, J.C. Voegel, B. Senger, C. Picart, Langmuir 22, 1193 (2005)

    Article  Google Scholar 

  • T. Shemesh, B. Geiger, A.D. Bershadsky, M.M. Kozlov, Proc. Natl. Acad. Sci. U. S. A. 102, 12383 (2005)

    Article  Google Scholar 

  • M.J. Sherratt, D.V. Bax, S.S. Chaudhry, N. Hodson, J.R. Lu, P. Saravanapavan, C.M. Kielty, Biomaterials 26, 7192 (2005)

    Article  Google Scholar 

  • T. Shimizu, M. Yamato, A. Kikuchi, T. Okano, Biomaterials 24, 2309 (2003)

    Article  Google Scholar 

  • J. Sinclair, A.K. Salem, Biomaterials 27, 2090 (2006)

    Article  Google Scholar 

  • M. Sittinger, B. Lukanoff, G.R. Burrneste, H. Dautzenberg, Biomaterials 17, 1049 (1996)

    Article  Google Scholar 

  • G.K. Toworfe, R.J. Composto, C.S. Adams, I.M. Shapiro, P. Ducheyne, J. Biomed. Mater. Res. Part A 71, 449 (2004)

    Article  Google Scholar 

  • P. Tryoen-Toth, D. Vautier, Y. Haikel, J.C. Voegel, P. Schaaf, J. Chluba, J. Ogier, J. Biomed. Mater. Res. Part A 60, 657 (2002)

    Article  Google Scholar 

  • N. Wang, E. Ostuni, G.M. Whitesides, D.E. Ingber, Cell Motil. Cytoskelet. 52, 97 (2002)

    Article  Google Scholar 

  • P. Warkentin, B. Waivaara, I. Lundstriim, P. Tengvall, Biomaterials 15, 786 (1994)

    Article  Google Scholar 

  • D. Yoo, S.S. Shiratori, M.F. Rubner, Macromolecules 31, 4309 (1998)

    Article  Google Scholar 

  • Y. Zhu, C. Gao, T. He, X. Liu, J. Shen, Biomacromolecules 4, 446 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from European Union 6th Framework project “CellPROM” (NMP4-CT-2004-500039) is gratefully acknowledged. Dr. H. Pick (LCPPM, EPFL, Switzerland) is thanked for the kind provision of human embryonic kidney cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Johann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johann, R.M., Baiotto, C. & Renaud, P. Micropatterned surfaces of PDMS as growth templates for HEK 293 cells. Biomed Microdevices 9, 475–485 (2007). https://doi.org/10.1007/s10544-007-9054-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-007-9054-6

Keywords

Navigation