Skip to main content
Log in

Rapid Fabrication and Chemical Patterning of Polymer Microstructures and their Applications as a Platform for Cell Cultures

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Much of the current knowledge regarding biological processes has been obtained through in-vitro studies in bulk aqueous solutions or in conventional Petri-dishes, with neither methodology accurately duplicating the actual in-vivo biological processes. Recently, a number of innovative approaches have attempted to address these shortcomings by providing substrates with controlled features. In particular, tunable surface chemistries and topographical micro and nanostructures have been used as model systems to study the complex biological processes. We herein report a versatile and rapid fabrication method to produce a variety of microstructured polymer substrates with precise control and tailoring of their surface chemistries. A poly(dimethylsiloxane) (PDMS) substrate, produced by replication over a master mold with specific microstructures, is modified by a fluoro siloxane derivative to enhance its anti-adhesion characteristics and used as a secondary replication mold. A curable material, deposited by spin coating on various substrates, is stamped with the secondary mold and crosslinked. The removal of the secondary mold produces a microstructured surface with the same topographical features as the initial master mold. The facile chemical patterning of the microstructured substrates is demonstrated through the use of microcontact printing methods and these materials are tested as a platform to guide cell attachment, growth and proliferation. The master mold and flexible fluorinated PDMS stamps can be used in a repeated manner without any degradation of the anti-adhesion characteristics opening the way to the development of high-throughput fabrication methods that can yield reliable and inexpensive microstructured and chemically patterned substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ATCC Technical Bulletin No. 4: Guide to subculturing cell line monolayers, http://www.ATCC.org.

  • F. Bensebaa, P. L’Ecuyer, K. Faid, Ch. Py, T.J. Tague, and R.S. Jackson, Applied Surface Science 243, 238 (2005)

    Article  Google Scholar 

  • D.G. Castner and B.D. Ratner, Surf. Sci. 500, 28 (2002).

    Article  Google Scholar 

  • M.B. Chan-Park, Y. Yan, W.K. Neo, W. Zhou, J. Zhang, and C.Y. Yue, Langmuir 19, 4371 (2003).

    Article  Google Scholar 

  • T. Chovan and A. Guttman, Trends in Biotechnology 20, 116 (2002).

    Article  PubMed  Google Scholar 

  • A.S. Curtis and C.D. Wilkinson, J. Biomater. Sci. Polym. Ed. 9, 1313 (1998).

    PubMed  Google Scholar 

  • A. Curtis and C. Wilkinson, Biomaterials 18, 1573 (1997).

    Article  PubMed  Google Scholar 

  • M.D. De Silva, R. Desai, and D.J. Odde, Biomedical Microdevices 6, 219 (2004).

    Article  PubMed  Google Scholar 

  • A. Ehrlicher, T. Betz, B. Stuhrmann, D. Koch, V. Milner, M. G. Raizen, and J. Käs, PNAS 99, 16024 (2002).

    Article  PubMed  Google Scholar 

  • Y.W. Fan, F.Z. Cui, S.P. Hou, Q.Y. Xu, L.N. Chen, and I.-S. Lee, J. Neuroscience Methods 120, 17 (2002).

    Article  Google Scholar 

  • J.M. Harris, Poly(ethyleneglycol) Chemistry: Biotechnical and Biomedical Apllications (Plenum Press, New York, 1992).

    Google Scholar 

  • C.D. James, R. Davis, M. Meyer, A. Turner, S. Turner, G. Withers, L. Kam, G. Banker, H. Craighead, M. Isaacson, J. Turner, and W. Shain, IEEE Trans Biomed Eng, 47, 17 (2000).

    Article  PubMed  Google Scholar 

  • J.D. Jeyaprakash, S. Samuel, and J. Rühe, Langmuir 20, 10080 (2004).

    Article  PubMed  Google Scholar 

  • L. Kam, W. Shain, J.N. Turner, and R. Bizios, Biomaterials 22, 1049 (2001).

    Article  PubMed  Google Scholar 

  • R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, and G.M. Whitesides, Biomaterials 20, 2363 (1999).

    Article  PubMed  Google Scholar 

  • Y. Li, T. Pfohl, J.H. Kim, M. Yasa, Z. Wen, M.W. Kim, and C.R. Safinya, Biomedical Microdevices 3, 239, (2001).

    Article  Google Scholar 

  • M.J. Mahoney, R.R. Chen, J. Tian, and W.M. Saltzman, Biomaterials 26, 771 (2005).

    Article  PubMed  Google Scholar 

  • H. Mirzadeh, F. Shokrolahi, and M. Daliri, J. Biomedical Materials Research Part A 67A, 727 (2003).

    Article  Google Scholar 

  • M. Mrksich, L.E. Dike, J. Tien, T.E. Ingber, and G.M. Whitesides, Experimental Cell research 235, 305 (1997).

    Article  PubMed  Google Scholar 

  • E. Ostuni. L. Yan, and G.M. Whitesides, Colloids and Surfaces B-Biointerfaces 15, 3 (1999).

    Article  Google Scholar 

  • X. Qian, Q. Shen, S.K. Goderie, W. He, A. Capela, A.A. Davis, and S. Temple, Neuron 1, 69 (2000).

    Article  Google Scholar 

  • B.D. Ratner and S.J. Bryant, Annu. Rev. Biomed. Eng. 6, 41 (2004).

    Article  PubMed  Google Scholar 

  • G.B. Sigal, M. Mrksich, and G.M. Whitesides, Journal of the American Chemical Society 120, 3464 (1998).

    Article  Google Scholar 

  • V. Tropepe, M. Sibilia, B.G. Ciruna, J. Rossant, E.F. Wagner, and D. Van der Kooy, Dev Biol. 166, 1208 (1999).

    Google Scholar 

  • C.D.W. Wilkinson, M. Riehle, M. Wood, J. Gallagher, and A.S.G. Curtis, Materials Science and Engineering C 19, 263 (2002).

    Article  Google Scholar 

  • J.Y. Wong, J.B. Leach, and X.Q. Brown, Surf. Sci. 570, 119 (2004).

    Article  Google Scholar 

  • Y.N. Xia and G.M. Whitesides, Angew. Chem. Int. Ed. 37, 551 (1998).

    Article  Google Scholar 

  • S.-M. Yun, H.-Y. Chang, M.-S. Kang, and C.-K. Choi, Thin Solid Films 341, 109 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faid, K., Voicu, R., Bani-Yaghoub, M. et al. Rapid Fabrication and Chemical Patterning of Polymer Microstructures and their Applications as a Platform for Cell Cultures. Biomed Microdevices 7, 179–184 (2005). https://doi.org/10.1007/s10544-005-3023-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-005-3023-8

Keywords

Navigation