Skip to main content

Advertisement

Log in

A model retinal interface based on directed neuronal growth for single cell stimulation

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this work, we use cell micropatterning technologies to direct neuronal growth to individual electrodes, and demonstrate that such an approach can achieve selective stimulation and lower stimulation thresholds than current field-effect based retinal prostheses. Rat retinal ganglion cells (RGCs) were purified through immunopanning techniques, and microcontact printing (μCP) was applied to align and pattern laminin on a microelectrode array, on which the RGCs were seeded and extended neurites along the pattern to individual electrodes. The stimulation threshold currents of RGCs micropatterned to electrodes were found to be significantly less than those of non-patterned RGCs over a wide range of electrode-soma distances, as determined with calcium imaging techniques. Moreover, the stimulation threshold for micropatterned cells was found to be independent of electrode-soma distance, and there was no significant effect of μCP on cell excitability. The effects of additional stimulation parameters, such as electrode size and pulse duration, on threshold currents were determined. The stimulation results quantitatively demonstrate the potential benefits of a retinal prosthetic interface based on directed neuronal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. B.A. Barres, B.E. Silverstein, D.P. Corey, and L.L.Y. Chun, Neuron 1, 791 (1988).

    Article  Google Scholar 

  • 2. J.L. Goldberg, and B.A. Barres, Annual Review of Neuroscience 23, 579 (2000).

    Article  Google Scholar 

  • 3. A.E. Grumet, J.L. Wyatt, and J.F. Rizzo, Journal Of Neuroscience Methods 15, 31 (2000).

    Article  Google Scholar 

  • 4. P. Heiduschka, I. Romann, T. Stieglitz, and S. Thanos, Experimental Neurology 171, 1 (2001).

    Article  Google Scholar 

  • 5. P.J. Horner, and F.H. Gage, Nature 407, 963 (2000).

    Article  Google Scholar 

  • 6. M.S. Humayun, Trans Am Ophthalmol Soc 99, 271 (2001).

    Google Scholar 

  • 7. M.S. Humayun, J.D. Weiland, G.Y. Fujii, R. Greenberg, R. Williamson, J. Little, B. Mech, V. Cimmarusti, G. Van Boemel, G. Dagnelie, and E. de Juan, Vision Research 43, 2573 (2003).

    Article  Google Scholar 

  • 8. C.D. James, A.J.H. Spence, N.M. Dowell-Mesfin, R.J. Hussain, K.L. Smith, H.G. Craighead, M.S. Isaacson, W. Shain, and J.N. Turner, IEEE Transactions on Biomedical Engineering 51, 1640 (2004).

    Article  Google Scholar 

  • 9. L. Kam, W. Shain, J.N. Turner, and R. Bizios, Biomaterials 22, 1049 (2001).

    Article  Google Scholar 

  • 10. T. Leng, P. Wu, N.Z. Mehenti, S.F. Bent, M.F. Marmor, M.S. Blumenkranz, and H.A. Fishman, Investigative Ophthalmology & Visual Science 45, 4132 (2004).

    Article  Google Scholar 

  • 11. G.P. Lewis, K.A. Linberg, and S.K. Fisher, Investigative Ophthalmology & Visual Science 39, 424 (1998).

    Google Scholar 

  • 12. J.I. Loewenstein, S.R. Montezuma, and J.F. Rizzo, Archives of Ophthalmology 122, 587 (2004).

    Article  Google Scholar 

  • 13. M.P. Maher, J. Pine, J. Wright, and Y.C. Tai, Journal of Neuroscience Methods 87, 45 (1999).

    Article  Google Scholar 

  • 14. R.E. Marc, B.W. Jones, C.B. Watt, and E. Strettoi, Prog Retin Eye Res 22, 607 (2003).

    Article  Google Scholar 

  • 15. E.M. Maynard, Annual Review of Biomedical Engineering 3, 145 (2001).

    Article  Google Scholar 

  • 16. D.B. McCreery, W.F. Agnew, T.G.H. Yuen, and L. Bullara, IEEE Transactions on Biomedical Engineering 37, 996 (1990).

    Article  Google Scholar 

  • 17. A. Meyer-Franke, M.R. Kaplan, F.W. Pfrieger, and B.A. Barres, Neuron 15, 805 (1995).

    Article  Google Scholar 

  • 18. Y. Nam, J.C. Chang, B.C. Wheeler, and G.J. Brewer, Ieee Transactions On Biomedical Engineering 51, 158 (2004).

    Article  Google Scholar 

  • 19. X. Navarro, S. Calvet, F.J. Rodriguez, T. Stieglitz, C. Blau, M. Buti, E. Valderrama, and J.U. Meyer, Journal Of The Peripheral Nervous System 3, 91 (1998).

    Google Scholar 

  • 20. M.C. Peterman, N.Z. Mehenti, K.V. Bilbao, C.J. Lee, T. Leng, J. Noolandi, S.F. Bent, M.S. Blumenkranz, and H.A. Fishman, Artificial Organs 27, 975 (2003).

    Article  Google Scholar 

  • 21. A. Prochazka, V.K. Mushahwar, and D.B. McCreery, Journal of Physiology-London 533, 99 (2001).

    Article  Google Scholar 

  • 22. J.F. Rizzo, J. Wyatt, J. Loewenstein, S. Kelly, and D. Shire, Investigative Ophthalmology & Visual Science 44, 5362 (2003).

    Article  Google Scholar 

  • 23. W.L.C. Rutten, Annual Review of Biomedical Engineering 4, 407 (2002).

    Article  Google Scholar 

  • 24. B.F. Sisken, J. Walker, and M. Orgel, Journal of Cellular Biochemistry 51, 404 (1993).

    Google Scholar 

  • 25. C.C. Stichel, and H.W. Muller, Progress in Neurobiology 56, 119 (1998).

    Article  Google Scholar 

  • 26. E.M. Ullian, W.B. Barkis, S. Chen, J.S. Diamond, and B.A. Barres, Molecular and Cellular Neuroscience 26, 544 (2004).

    Article  Google Scholar 

  • 27. A.K. Vogt, L. Lauer, W. Knoll, and A. Offenhausser, Biotechnology Progress 19, 1562 (2003).

    Article  Google Scholar 

  • 28. B.C. Wheeler, J.M. Corey, G.J. Brewer, and D.W. Branch, Journal of Biomechanical Engineering 121, 73 (1999).

    Google Scholar 

  • 29. G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, and D.E. Ingber, Annual Review of Biomedical Engineering 3, 335 (2001).

    Article  Google Scholar 

  • 30. G. Zeck, and P. Fromherz, Proceedings of the National Academy of Sciences of the United States of America 28, 10457 (2001).

    Article  Google Scholar 

  • 31. E. Zrenner, Science 295, 1022 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey F. Bent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehenti, N.Z., Tsien, G.S., Leng, T. et al. A model retinal interface based on directed neuronal growth for single cell stimulation. Biomed Microdevices 8, 141–150 (2006). https://doi.org/10.1007/s10544-006-7709-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-7709-3

Keywords

Navigation