Skip to main content
Log in

Fabrication and testing of microelectrodes for small-field cortical surface recordings

BIOMEMS MATERIALS AND FABRICATION TECHNOLOGY

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A microfabrication approach to produce a microelectrode array that is suitable for use with human patients has been developed. The device is comprised of materials that are consistent with those of clinically used macroelectrodes (platinum electrode contacts suspended within a biomedical grade polydimethylsiloxane, PDMS). Photolithography, metal deposition, wire bonding, and PDMS encapsulation were used to fabricate the device. Cytotoxicity testing with both mammalian and human cortical cells suggests that the device is suitable for use with human patients and implementation of the device in animal studies revealed that reliable evoked potentials could be acquired with the designed spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.J. Burmeister, F. Pomerleau, M. Palmer, B. Day and P. Huettland G. Gerhardt, Journal of Neuroscience Methods 119, 163 (2002).

    Article  Google Scholar 

  • B. Heppelmann and M. Pawlakand R.F. Schmidt, Experimental Brain Research 141, 501 (2001).

    Article  Google Scholar 

  • D.J. Waren and E. Fernandezand R.A. Norman, Neuroscience 105, 19 (2001).

    Google Scholar 

  • N. Bechtereva and Y. AbdullaevInternational Journal of Psycophysiology 37, (2000).

  • H. Oya, H. Kawasaki and M.A. Howard IIIand R. Adolphs, Journal of Neuroscience 22, 9502 (2002).

    Google Scholar 

  • T.H. Schwartz, M.M. Haglund and E. Lettichand G.A. Ojemann, Journal of Cognitive Neuroscience 12, 803 (2000).

    Google Scholar 

  • P.D. Williamson, J.A. French, V.M. Thadani, J.H. Kim and R.A. Novelly S.S. Spencer, D.D. Spencer, and R.H. Mattson, Annals of Neurology 34, 781 (1993).

    Article  Google Scholar 

  • M. Maghribi, J. Hamilton, D. Polla, K. Rose and T. Wilsonand P. Krulevitch, Stretchable micro-electrode array. In: Proc. 2nd Intnat'l IEEE-EMBS Conf on Microtech in Med & Biology. pp. 80–83 (2002).

  • V.B. Mountcastle Brain 120, 701 (1997).

    Article  Google Scholar 

  • K.E. Misulis Spelmann's Evoked Potential Primer: visual, auditory, and somatosensory evoked potentials in clinical diagnosis. (Butterworth-Heinemann, Newton, MA 1994).

    Google Scholar 

  • J. Black Biological Performance of Materials: Fundamentals of Biocompatibilty (Marcel Dekker Inc., New York, 1999).

    Google Scholar 

  • R. Eckhorn, A. Stett, T. Schanze, F. Gekeler and H. SchwahnE. Zrenner, M. Wilms, M. Eger, and L. Hesse, Ophthalmologe 98, 369 (2001).

    Article  Google Scholar 

  • A.N. Karamanlidis and J. MagrasBrain Research 44, 127 (1972).

    Article  Google Scholar 

  • J. Kitzmiller Design, engineering, and evaluation of a novel microgrid electrode array to monitor the electrical activity on the surface of the cerebral cortex. (Electronic Theses and Dissertations Center, June 2004), http://www.ohiolink.edu/etd/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Hansford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitzmiller, J., Beversdorf, D. & Hansford, D. Fabrication and testing of microelectrodes for small-field cortical surface recordings. Biomed Microdevices 8, 81–85 (2006). https://doi.org/10.1007/s10544-006-6386-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-006-6386-6

Keywords

Navigation