Skip to main content

Microelectrode Array Fabrication and Optimization for Selective Neurochemical Detection

  • Protocol
  • First Online:
Microelectrode Biosensors

Abstract

A major goal of our research is to develop an implantable device for routine amperometric recordings of l-glutamate and other neurotransmitters in the mammalian central nervous system. Specifically, we wanted to develop a microelectrode that is (1) mass produced such that other laboratories can easily utilize the same recording technology, (2) designed to study multiple brain regions and neurotransmitters in various in vitro and in vivo systems, and (3) configured for “self-referencing” recordings, which allows for measurements of resting or tonic levels of neurotransmitters, cross-checking of the selectivity of the microelectrode measures, and improved signal-to-noise ratio by noise subtraction. The present chapter documents our current capabilities of measuring l-glutamate and several other neurotransmitters with rapid temporal resolution using mass-fabricated microelectrode arrays formed on ceramic. We have routinely demonstrated that these electrodes have fast temporal resolution (<1 s), excellent spatial resolution (microns), and low detection limits (≤200 nM) and cause minimal damage (50–100 μm) to surrounding brain tissue. While not a comprehensive assessment of the technology, this chapter contains a large amount of information regarding the fabrication, use, and potential pitfalls of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krnjevic K (2005) From ‘soup physiology’ to normal brain science. J Physiol 569:1–2

    Article  PubMed  CAS  Google Scholar 

  2. Artola A, Singer W (1987) Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330:649–652

    Article  PubMed  CAS  Google Scholar 

  3. Cotman CW, Monaghan DT, Ganong AH (1988) Excitatory amino acid neurotransmission: NMDA receptors and hebb-type synaptic plasticity. Annu Rev Neurosci 11:61–80

    Article  PubMed  CAS  Google Scholar 

  4. Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102

    Article  PubMed  CAS  Google Scholar 

  5. Mattson MP, Dou P, Kater SB (1988) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons. J Neurosci 8:2087–2100

    PubMed  CAS  Google Scholar 

  6. Brewer GJ, Cotman CW (1989) NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons. Neurosci Lett 99:268–273

    Article  PubMed  CAS  Google Scholar 

  7. Komuro H, Rakic P (1993) Modulation of neuronal migration by NMDA receptors. Science 260:95–97

    Article  PubMed  CAS  Google Scholar 

  8. Doble A (1999) The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 81:163–221

    Article  PubMed  CAS  Google Scholar 

  9. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  10. Mechri A, Saoud M, Khiari G et al (2001) Glutaminergic hypothesis of schizophrenia: clinical research studies with ketamine. Encéphale 27:53–59

    PubMed  CAS  Google Scholar 

  11. Lopez-Moreno JA, Gonzalez-Cuevas G, Moreno G et al (2008) The pharmacology of the endocannabinoid system: functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction. Addict Biol 13:160–187

    Article  PubMed  CAS  Google Scholar 

  12. Mathew SJ, Price RB, Charney DS (2008) Recent advances in the neurobiology of anxiety disorders: implications for novel therapeutics. Am J Med Genet C Semin Med Genet 148C:89–98

    Article  PubMed  CAS  Google Scholar 

  13. McNally L, Bhagwagar Z, Hannestad J (2008) Inflammation, glutamate, and glia in depression: a literature review. CNS Spectr 13:501–510

    PubMed  Google Scholar 

  14. Ungerstedt U (1991) Microdialysis–principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  15. Di Chiara G, Tanda G, Carboni E (1996) Estimation of in-vivo neurotransmitter release by brain microdialysis: the issue of validity. Behav Pharmacol 7:640–657

    Article  PubMed  Google Scholar 

  16. Kennedy RT, Watson CJ, Haskins WE et al (2002) In vivo neurochemical monitoring by microdialysis and capillary separations. Curr Opin Chem Biol 6:659–665

    Article  PubMed  CAS  Google Scholar 

  17. Lada MW, Vickroy TW, Kennedy RT (1997) High temporal resolution monitoring of glutamate and aspartate in vivo using microdialysis on-line with capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 69:4560–4565

    Article  PubMed  CAS  Google Scholar 

  18. Tucci S, Rada P, Sepulveda MJ et al (1997) Glutamate measured by 6-s resolution brain microdialysis: capillary electrophoretic and laser-induced fluorescence detection application. J Chromatogr B 694:343–349

    Article  CAS  Google Scholar 

  19. Rossell S, Gonzalez LE, Hernandez L (2003) One-second time resolution brain microdialysis in fully awake rats - protocol for the collection, separation and sorting of nanoliter dialysate volumes. J Chromatogr B Analyt Technol Biomed Life Sci 784:385–393

    Article  PubMed  CAS  Google Scholar 

  20. Timmerman W, Westerink BHC (1997) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27:242–261

    Article  PubMed  CAS  Google Scholar 

  21. van der Zeyden M, Oldenziel WH, Rea K et al (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90:135–147

    Article  PubMed  Google Scholar 

  22. Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572

    Article  PubMed  CAS  Google Scholar 

  23. Montiel T, Camacho A, Estrada-Sanchez AM et al (2005) Differential effects of the substrate inhibitor l-trans-pyrrolidine-2,4-dicarboxylate (PDC) and the non-substrate inhibitor dl-threo-beta-benzyloxyaspartate (DL-TBOA) of glutamate transporters on neuronal damage and extracellular amino acid levels in rat brain in vivo. Neuroscience 133:667–678

    Article  PubMed  CAS  Google Scholar 

  24. Baker DA, Xi ZX, Shen H et al (2002) The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci 22:9134–9141

    PubMed  CAS  Google Scholar 

  25. Burmeister JJ, Moxon K, Gerhardt G (2000) Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem 72:187–192

    Article  PubMed  CAS  Google Scholar 

  26. Burmeister JJ, Gerhardt G (2001) Self-referencing ceramic-based multisite microelectrodes for the detection and elimination of interferences from the measurement of l-glutamate and other analytes. Anal Chem 73:1037–1042

    Article  PubMed  CAS  Google Scholar 

  27. Burmeister J, Pomerleau F, Palmer M et al (2002) Improved ceramic-based multisite microelectrode for rapid measurements of l-glutamate in the CNS. J Neurosci Methods 119:163–171

    Article  PubMed  CAS  Google Scholar 

  28. Pomerleau F, Day BK, Huettl P et al (2003) Real time in vivo measures of l-glutamate in the rat central nervous system using ceramic-based multisite microelectrode arrays. Ann NY Acad Sci 1003:454–457

    Article  PubMed  CAS  Google Scholar 

  29. Nickell J, Pomerleau F, Allen J et al (2005) Age-related changes in the dynamics of potassium-evoked l-glutamate release in the striatum of Fischer 344 rats. J Neural Transm 112:87–96

    Article  PubMed  CAS  Google Scholar 

  30. Day BK, Pomerleau F, Burmeister JJ et al (2006) Microelectrode array studies of basal and potassium-evoked release of l-glutamate in the anesthetized rat brain. J Neurochem 96:1626–1635

    Article  PubMed  CAS  Google Scholar 

  31. Nickell J, Salvatore MF, Pomerleau F et al (2007) Reduced plasma membrane surface expression of GLAST mediates decreased glutamate regulation in the aged striatum. Neurobiol Aging 28:1737–1748

    Article  PubMed  CAS  Google Scholar 

  32. Quintero JE, Day BK, Zhang Z et al (2007) Amperometric measures of age-related changes in glutamate regulation in the cortex of rhesus monkeys. Exp Neurol 208:238–246

    Article  PubMed  CAS  Google Scholar 

  33. Rutherford EC, Pomerleau F, Huettl P et al (2007) Chronic second-by-second measures of l-Glutamate in the central nervous system of freely moving rats. J Neurochem 102:712–722

    Article  PubMed  CAS  Google Scholar 

  34. Hascup KN, Hascup ER, Pomerleau F et al (2008) Second-by-second measures of l-glutamate in the prefrontal cortex and striatum of freely moving mice. J Pharmacol Exp Ther 324:725–731

    Article  PubMed  CAS  Google Scholar 

  35. Kulagina NV, Shankar L, Michael AC (1999) Monitoring glutamate and ascorbate in the extracellular space of grain tissue with electrochemical microsensors. Anal Chem 71:5093–5100

    Article  PubMed  CAS  Google Scholar 

  36. Oldenziel WH, Dijkstra G, Cremers TIFH et al (2006) In vivo monitoring of extracellular glutamate in the brain with a microsensor. Brain Res 1118:34–42

    Article  PubMed  CAS  Google Scholar 

  37. Hascup ER, Hascup KN, Stephens M et al (2010) Rapid microelectrode measurements and the origin and regulation of extracellular glutamate in rat prefrontal cortex. J Neurochem 115(6):1608–1620

    Article  PubMed  CAS  Google Scholar 

  38. Kinney GA, Overstreet LS, Slater NT (1997) Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J Neurophysiol 78:1320–1333

    PubMed  CAS  Google Scholar 

  39. Drew KL, Pehek EA, Rasley BT et al (2004) Sampling glutamate and GABA with microdialysis: suggestions on how to get the dialysis membrane closer to the synapse. J Neurosci Methods 140:127–131

    Article  PubMed  CAS  Google Scholar 

  40. Clapp-Lilly KL, Roberts RC, Duffy LK et al (1999) An ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90:129–142

    Article  PubMed  CAS  Google Scholar 

  41. Bungay PM, Newton-Vinson P, Isele W et al (2003) Microdialysis of dopamine interpreted with quantitative model incorporating probe implantation trauma. J Neurochem 86:932–946

    Article  PubMed  CAS  Google Scholar 

  42. Hascup ER, af Bjerken S, Hascup KN et al (2009) Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res 1291:12–20

    Article  PubMed  CAS  Google Scholar 

  43. Yang H, Peters JL, Michael AC (1998) Coupled effects of mass transfer and uptake kinetics on in vivo microdialysis of dopamine. J Neurochem 71:684–692

    Article  PubMed  CAS  Google Scholar 

  44. Marsden CA, Joseph MH, Kruk ZL et al (1988) In vivo voltammetry–present electrodes and methods. Neuroscience 25:389–400

    Article  PubMed  CAS  Google Scholar 

  45. Adams RN (1990) Invivo electrochemical measurements in the CNS. Prog Neurobiol 35:297–311

    Article  PubMed  CAS  Google Scholar 

  46. Michael DJ, Wightman RM (1999) Electrochemical monitoring of biogenic amine neurotransmission in real time. J Pharm Biomed Anal 19:33–46

    Article  PubMed  CAS  Google Scholar 

  47. Hascup KN, Rutherford EC, Quintero JE et al (2006) Second-by-second measures of l-glutamate and other neurotransmitters using enzyme-based microelectrode arrays. In: Michael AC, Borland LM (eds) Electrochemical methods for neuroscience. CRC, Boca Raton, FL

    Google Scholar 

  48. Gerhardt GA, Burmeister JJ (2000) Voltammetry in vivo for chemical analysis of the nervous system. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester

    Google Scholar 

  49. Martin KF, Marsden CA (1987) Invivo electrochemistry - principles and applications. Life Sci 41:865–868

    Article  PubMed  CAS  Google Scholar 

  50. Burmeister JJ, Gerhardt GA (2003) Ceramic-based multisite microelectrode arrays for in vivo electrochemical recordings of glutamate and other neurochemicals. Trends Anal Chem 22:498–502

    Article  CAS  Google Scholar 

  51. Stephens ML, Quintero JE, Pomerleau F et al (2009) Age-related changes in glutamate release in the CA3 and dentate gyrus of the rat hippocampus. Neurobiol Aging 32(5):811–820

    Article  PubMed  Google Scholar 

  52. Photolithography (2001) Texas engineering extension service (ed), Texas

    Google Scholar 

  53. Bargon J (ed) (1984) Methods and materials in microelectronic technology (IBM Research Symposia Series), Plenum, New York, NY

    Google Scholar 

  54. Wire Bond (1998) Texas Engineering Extension Service (ed), Texas

    Google Scholar 

  55. Gerhardt GA, Burmeister JJ (2006) Neurochemical arrays. In: Grimes CA (ed) Encyclopedia of sensors. American Scientific, Stevenson Ranch, CA

    Google Scholar 

  56. Borland LM, Shi GY, Yang H et al (2005) Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 146:149–158

    Article  PubMed  CAS  Google Scholar 

  57. Gerhardt GA, Oke AF, Nagy G et al (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res 290:390–395

    Article  PubMed  CAS  Google Scholar 

  58. van Horne C, Hoffer BJ, Stromberg I et al (1992) Clearance and diffusion of locally applied dopamine in normal and 6-hydroxydopamine-lesioned rat striatum. J Pharmacol Exp Ther 263:1285–1292

    PubMed  Google Scholar 

  59. Hebert MA, van Horne CG, Hoffer BJ et al (1996) Functional effects of GDNF in normal rat striatum: presynaptic studies using in vivo electrochemistry and microdialysis. J Pharmacol Exp Ther 279:1181–1190

    PubMed  CAS  Google Scholar 

  60. Hoffman AF, Lupica CR, Gerhardt GA (1998) Dopamine transporter activity in the substantia nigra and striatum assessed by high-speed chronoamperometric recordings in brain slices. J Pharmacol Exp Ther 287:487–496

    PubMed  CAS  Google Scholar 

  61. Friedemann MN, Robinson SW, Gerhardt GA (1996) o-Phenylenediamine-modified carbon-fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621–2628

    Article  PubMed  CAS  Google Scholar 

  62. Lowry JP, Miele M, O’Neill RD et al (1998) An amperometric glucose-oxidase/poly(o-Phenylenediamine) biosensor for monitoring brain extracellular glucose: in vivo characterisation in the striatum of freely-moving rats. J Neurosci Methods 79:65–74

    Article  PubMed  CAS  Google Scholar 

  63. Chen X, Matsumoto N, Hu Y et al (2002) Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics. Anal Chem 74:368–372

    Article  PubMed  CAS  Google Scholar 

  64. Matsumoto N, Chen X, Wilson GS (2002) Fundamental studies of glucose oxidase deposition on a Pt electrode. Anal Chem 74:362–367

    Article  PubMed  CAS  Google Scholar 

  65. Burmeister JJ, Pomerleau F, Huettl P et al (2008) Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens Bioelectron 23:1382–1389

    Article  PubMed  CAS  Google Scholar 

  66. Hinzman JM, Thomas TC, Burmeister JJ et al (2010) Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma 27:889–899

    Article  PubMed  Google Scholar 

  67. Bindra DS, Zhang Y, Wilson GS et al (1991) Design and in vitro studies of a needle-type glucose sensor for subcutaneous monitoring. Anal Chem 63:1692–1696

    Article  PubMed  CAS  Google Scholar 

  68. Burmeister JJ, Palmer M, Gerhardt G (2005) l-Lactate measures in brain tissue with ceramic-based multisite microelectrodes. Biosens Bioelectron 20:1772–1779

    Article  PubMed  CAS  Google Scholar 

  69. Dash MB, Douglas CL, Vyazovskiy VV et al (2009) Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 29:620–629

    Article  PubMed  CAS  Google Scholar 

  70. Konradsson-Geuken A, Gash CR, Alexander K et al (2009) Second-by-second analysis of alpha 7 nicotine receptor regulation of glutamate release in the prefrontal cortex of awake rats. Synapse 63:1069–1082

    Article  PubMed  CAS  Google Scholar 

  71. Stephens ML, Pomerleau F, Huettl P et al (2010) Real-time glutamate measurements in the putamen of awake rhesus monkeys using an enzyme-based human microelectrode array prototype. J Neurosci Methods 185:264–272

    Article  PubMed  CAS  Google Scholar 

  72. Thomas TC, Grandy DK, Gerhardt GA et al (2009) Decreased dopamine D4 receptor expression increases extracellular glutamate and alters its regulation in mouse striatum. Neuropsychopharmacology 34:436–445

    Article  PubMed  CAS  Google Scholar 

  73. Parikh V, Ji J, Decker MW et al (2010) Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 30:3518–3530

    Article  PubMed  CAS  Google Scholar 

  74. Giuliano C, Parikh V, Ward JR et al (2008) Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites? Neurochem Int 52:1343–1350

    Article  PubMed  CAS  Google Scholar 

  75. Burmeister J, Palmer M, Gerhardt G (2003) Ceramic-based multisite microelectrode array for rapid choline measures in brain tissue. Anal Chim Acta 481:65–74

    Article  CAS  Google Scholar 

  76. Parikh V, Pomerleau F, Huettl P et al (2004) Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur J Neurosci 20:1545–1554

    Article  PubMed  Google Scholar 

  77. Parikh V, Sarter M (2006) Cortical choline transporter function measured in vivo using choline-sensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. J Neurochem 97:488–503

    Article  PubMed  CAS  Google Scholar 

  78. Parikh V, Kozak R, Martinez V et al (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141–154

    Article  PubMed  CAS  Google Scholar 

  79. Parikh V, Sarter M (2008) Cholinergic mediation of attention: contributions of phasic and tonic increases in prefrontal cholinergic activity. Ann NY Acad Sci 1129:225–235

    Article  PubMed  CAS  Google Scholar 

  80. Hu Y, Mitchell KM, Albahadily FN et al (1994) Direct measurement of glutamate release in the brain using a dual enzyme-based electrochemical sensor. Brain Res 659:117–125

    Article  PubMed  CAS  Google Scholar 

  81. Dixon BM, Lowry JP, O’Neill RD (2002) Characterization in vitro and in vivo of the oxygen dependence of an enzyme/polymer biosensor for monitoring brain glucose. J Neurosci Methods 119:135–142

    Article  PubMed  CAS  Google Scholar 

  82. Wilson GS, Gifford R (2005) Biosensors for real-time in vivo measurements. Biosens Bioelectron 20:2388–2403

    Article  PubMed  CAS  Google Scholar 

  83. Williams GV, Millar J (1990) Concentration-dependent actions of stimulated dopamine release on neuronal activity in rat striatum. Neuroscience 39:1–16

    Article  PubMed  CAS  Google Scholar 

  84. Stamford JA, Palij P, Davidson C et al (1993) Simultaneous “Real-Time” electrochemical and electrophysiological recording in brain slices with a single carbon-fibre microelectrode. J Neurosci Methods 50:279–290

    Article  PubMed  CAS  Google Scholar 

  85. Cheer JF, Heien ML, Garris PA et al (2005) Simultaneous dopamine and single-unit recordings reveal accumbens gabaergic responses: implications for intracranial self-stimulation. Proc Natl Acad Sci USA 102:19150–19155

    Article  PubMed  CAS  Google Scholar 

  86. Zhang H, Lin SC, Nicolelis MA (2009) Acquiring local field potential information from amperometric neurochemical recordings. J Neurosci Methods 179:191–200

    Article  PubMed  CAS  Google Scholar 

  87. Zhang H, Lin SC, Nicolelis MA (2010) Spatiotemporal coupling between hippocampal acetycholine release and theta oscillations in vivo. J Neurosci 30:13431–13440

    Article  PubMed  CAS  Google Scholar 

  88. Bao X, Pal R, Hascup KN et al (2009) Transgenic expression of Glud1 (Glutamate Dehydrogenase 1) in neurons: in vivo model of enhanced glutamate release, altered synaptic plasticity, and selective neuronal vulnerability. J Neurosci 29:13929–13944

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF EEC-0310723; NIH/NIDA DA017186; CEBRA, Phase II.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Disclosure

Disclosure

Greg A. Gerhardt, Ph.D. is the sole proprietor of Quanteon, LLC.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hascup, K.N. et al. (2013). Microelectrode Array Fabrication and Optimization for Selective Neurochemical Detection. In: Marinesco, S., Dale, N. (eds) Microelectrode Biosensors. Neuromethods, vol 80. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-370-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-370-1_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-369-5

  • Online ISBN: 978-1-62703-370-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics