Skip to main content
Log in

Analysis and preconditioning of parameter-robust finite element methods for Biot’s consolidation model

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we consider a three-field formulation of the Biot model which has the displacement, the total pressure, and the pore pressure as unknowns. For parameter-robust stability analysis, we first show a priori estimates of the continuous problem with parameter-dependent norms. Then we study finite element discretizations which provide parameter-robust error estimates and preconditioners. For finite element discretizations we consider standard mixed finite element as well as stabilized methods for the Stokes equations, and the complete error analysis of semidiscrete solutions is given. Abstract forms of parameter-robust preconditioners are investigated by the operator preconditioning approach. The theoretical results are illustrated with numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anandarajah, A.: Computational Methods in Elasticity and Plasticity: Solids and Porous Media, SpringerLink: Bücher. Springer, New York (2010)

    Book  MATH  Google Scholar 

  2. Bærland, T., Lee, J.J., Mardal, K.-A., Winther, R.: Weakly imposed symmetry and robust preconditioners for Biot’s consolidation model. Comput. Methods Appl. Math. 17(3), 377–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bause, M., Radu, F.A., Köcher, U.: Space-time finite element approximation of the Biot poroelasticity system with iterative coupling. Comput. Methods Appl. Mech. Eng. 320, 745–768 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, L., Bordas, R., Kay, D., Tavener, S.: Stabilized lowest-order finite element approximation for linear three-field poroelasticity. SIAM J. Sci. Comput. 37(5), A2222–A2245 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations, Efficient solutions of elliptic systems (Kiel, 1984), Notes Numer. Fluid Mech., vol. 10, Friedr. Vieweg, Braunschweig, pp. 11–19. MR 804083 (1984)

  7. Chaabane, N., Rivière, B.: A sequential discontinuous Galerkin method for the coupling of flow and geomechanics. J. Sci. Comput. 74(1), 375–395 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219(17), 9043–9056 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Cheng, A.H.-D.: Poroelasticity, Theory and Applications of Transport in Porous Media, vol. 27. Springer, Cham (2016)

    Google Scholar 

  10. Falgout, R.D., Yang, U.M.: hypre: A library of high performance preconditioners. In: P.M.A. Sloot, A.G. Hoekstra, C.J. Kenneth Tan, J.J. Dongarra (Eds.) Computational Science—ICCS 2002 (Berlin, Heidelberg), pp. 632–641. Springer, Berlin (2002)

  11. Feng, X., Ge, Z., Li, Y.: Analysis of a multiphysics finite element method for a poroelasticity model. IMA J. Numer. Anal. 38(1), 330–359 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Franca, L.P., Hughes, T.J.R., Stenberg, R.: Stabilized Finite Element Methods, Incompressible Computational Fluid Dynamics: Trends and Advances, pp. 87–107. Cambridge Univ. Press, Cambridge (2008)

    Google Scholar 

  13. Guosheng, F.: A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl. 77(1), 237–252 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gaspar, F.J., Rodrigo, C., Hu, X., Ohm, P., Adler, J., Zikatanov, L.: New Stabilized Discretizations for Poroelasticity Equations, Numerical methods and applications, Lecture Notes in Comput. Sci., vol. 11189, pp. 3–14. Springer, Cham (2019)

  15. Girault, V., Pierre-Arnaud, R.: Finite element methods for Navier–Stokes equations, Springer Series in Computational Mathematics, Theory and algorithms. vol. 5. Springer, Berlin (1986). MR 851383 (88b:65129)

  16. Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal. 48, 202–226 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiaozhe, H., Rodrigo, C., Gaspar, F.J., Zikatanov, L.T.: A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310, 143–154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kechkar, N., Silvester, D.: Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58(197), 1–10 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korsawe, J., Starke, G.: A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43(1), 318–339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jeonghun, J.: Lee, Robust error analysis of coupled mixed methods for Biot’s consolidation model. J. Sci. Comput. 69(2), 610–632 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lee, J.J.: Robust three-field finite element methods for Biot’s consolidation model in poroelasticity. BIT 58(2), 347–372 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeonghun, J.: Lee, Kent-Andre Mardal, and Ragnar Winther, Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comp. 39(1), A1–A24 (2017)

    Article  MATH  Google Scholar 

  23. Logg, A., Mardal, K.-A., Wells, G.N. (eds.): Automated solution of differential equations by the finite element method. In: Lecture Notes in Computational Science and Engineering, vol. 84. Springer, Heidelberg (2012). The FEniCS book. MR 3075806

  24. Murad, M.A., Loula, A.F.D.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95(3), 359–382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Murad, M.A., Loula, A.F.D.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Murad, M.A., Thomée, V., Loula, A.F.D.: Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33(3), 1065–1083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54(5), 2951–2973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case. Comput. Geosci. 11(2), 145–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Piersanti, E., Rognes, M.E.: Supplementary Material (Code) for a Mixed Finite Element Method For Nearly Incompressible Multiple-Network Poroelasticity’ by J. J. Lee, E. Piersanti, K.-A. Mardal and M. E. Rognes (2018)

  31. Showalter, R.E.: Diffusion in Poro-elastic Media. J. Math. Anal. Appl. 251(1), 310–340 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Vermeer, P.A., Verruijt, A.: An accuracy condition for consolidation by finite elements. Int. J. Numer. Analyt. Methods Geomech. 5(1), 1–14 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yi, S.-Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Part. Differ. Equ. 29(5), 1749–1777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yosida, K.: Functional Analysis, 6th ed., Springer Classics in Mathematics. Springer (1980)

  35. Zienkiewicz, O.C., Shiomi, T.: Dynamic behaviour of saturated porous media; The generalized Biot formulation and its numerical solution. Int. J. Numer. Analyt. Methods Geomech. 8(1), 71–96 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghun J. Lee.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Communicated by Marko Huhtanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J. Analysis and preconditioning of parameter-robust finite element methods for Biot’s consolidation model. Bit Numer Math 63, 42 (2023). https://doi.org/10.1007/s10543-023-00983-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00983-x

Keywords

Mathematics Subject Classification

Navigation