Skip to main content
Log in

Analysis and simulation of a variational stabilization for the Helmholtz equation with noisy Cauchy data

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This article considers a Cauchy problem of Helmholtz equations whose solution is well known to be exponentially unstable with respect to the inputs. In the framework of variational quasi-reversibility method, a Fourier truncation is applied to appropriately perturb the underlying problem, which allows us to obtain a stable approximate solution. The corresponding approximate problem is of a hyperbolic equation, which is also a crucial aspect of this approach. Error estimates between the approximate and true solutions are derived with respect to the noise level. From this analysis, the Lipschitz stability with respect to the noise level follows. Some numerical examples are provided to see how our numerical algorithm works well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge, England (2019)

    Book  MATH  Google Scholar 

  2. Tuan, N.H., Khoa, V.A., Minh, M.N., Tran, T.: Reconstruction of the electric field of the Helmholtz equation in three dimensions. J. Comput. Appl. Math. 309, 56–78 (2017). https://doi.org/10.1016/j.cam.2016.05.021

    Article  MathSciNet  MATH  Google Scholar 

  3. Klibanov, M.V., Nguyen, D.-L., Nguyen, L.H.: A coefficient inverse problem with a single measurement of phaseless scattering data. SIAM J. Appl. Math. 79(1), 1–27 (2019). https://doi.org/10.1137/18m1168303

    Article  MathSciNet  MATH  Google Scholar 

  4. Karimi, M.: Regularization of ill-posed problems involving constant-coefficient pseudo-differential operators. Inverse Prob. 38(5), 055001 (2022). https://doi.org/10.1088/1361-6420/ac5ac8

    Article  MathSciNet  MATH  Google Scholar 

  5. Leitão, A.: An iterative method for solving elliptic cauchy problems. Numer. Funct. Anal. Opt. 21(5–6), 715–742 (2000). https://doi.org/10.1080/01630560008816982

    Article  MathSciNet  MATH  Google Scholar 

  6. Qian, Z., Fu, C.-L., Li, Z.-P.: Two regularization methods for a Cauchy problem for the Laplace equation. J. Math. Anal. Appl. 338(1), 479–489 (2008). https://doi.org/10.1016/j.jmaa.2007.05.040

    Article  MathSciNet  MATH  Google Scholar 

  7. Tuan, N.H., Trong, D.D., Quan, P.H.: A note on a Cauchy problem for the Laplace equation: Regularization and error estimates. Appl. Math. Comput. 217(7), 2913–2922 (2010). https://doi.org/10.1016/j.amc.2010.09.019

    Article  MathSciNet  MATH  Google Scholar 

  8. Eldén, L., Simoncini, V.: A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces. Inverse Prob. 25(6), 065002 (2009). https://doi.org/10.1088/0266-5611/25/6/065002

    Article  MathSciNet  MATH  Google Scholar 

  9. Hào, D.N., Lesnic, D.: The Cauchy problem for laplace’s equation via the conjugate gradient method. IMA J. Appl. Math. 65(2), 199–217 (2000). https://doi.org/10.1093/imamat/65.2.199

    Article  MathSciNet  MATH  Google Scholar 

  10. Klibanov, M.V.: Carleman estimates for the regularization of ill-posed Cauchy problems. Appl. Numer. Math. 94, 46–74 (2015). https://doi.org/10.1016/j.apnum.2015.02.003

    Article  MathSciNet  MATH  Google Scholar 

  11. Reinhardt, H.-J., Han, H., Hào, D.N.: Stability and regularization of a discrete approximation to the Cauchy problem for Laplace’s equation. SIAM J. Numer. Anal. 36(3), 890–905 (1999). https://doi.org/10.1137/s0036142997316955

    Article  MathSciNet  MATH  Google Scholar 

  12. Falk, R.S., Monk, P.B.: Logarithmic convexity for discrete harmonic functions and the approximation of the Cauchy problem for Poisson’s equation. Math. Comput. 47(175), 135 (1986). https://doi.org/10.2307/2008085

    Article  MathSciNet  MATH  Google Scholar 

  13. Eldén, L., Berntsson, F.: A stability estimate for a Cauchy problem for an elliptic partial differential equation. Inverse Prob. 21(5), 1643–1653 (2005). https://doi.org/10.1088/0266-5611/21/5/008

    Article  MathSciNet  MATH  Google Scholar 

  14. Karimi, M., Rezaee, A.: Regularization of the Cauchy problem for the Helmholtz equation by using Meyer wavelet. J. Comput. Appl. Math. 320, 76–95 (2017). https://doi.org/10.1016/j.cam.2017.02.005

    Article  MathSciNet  MATH  Google Scholar 

  15. Qiu, C.-Y., Fu, C.-L.: Wavelets and regularization of the Cauchy problem for the Laplace equation. J. Math. Anal. Appl. 338(2), 1440–1447 (2008). https://doi.org/10.1016/j.jmaa.2007.06.035

    Article  MathSciNet  MATH  Google Scholar 

  16. Lattès, R., Lions, J.L.: Méthode de Quasi-réversibilité et Applications. Dunod, Paris (1967)

    MATH  Google Scholar 

  17. Nguyen, H.T., Khoa, V.A., Vo, V.A.: Analysis of a quasi-reversibility method for a terminal value quasi-linear parabolic problem with measurements. SIAM J. Math. Anal. 51(1), 60–85 (2019). https://doi.org/10.1137/18m1174064

    Article  MathSciNet  MATH  Google Scholar 

  18. Khoa, V.A., Nhan, P.T.H.: Constructing a variational quasi-reversibility method for a Cauchy problem for elliptic equations. Math. Methods Appl. Sci. 44(5), 3334–3355 (2020). https://doi.org/10.1002/mma.6945

    Article  MathSciNet  MATH  Google Scholar 

  19. Klibanov, M.V.: Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems. J. Inverse Ill Posed Prob. (2013). https://doi.org/10.1515/jip-2012-0072

    Article  MathSciNet  MATH  Google Scholar 

  20. Khoa, V.A., Bidney, G.W., Klibanov, M.V., Nguyen, L.H., Nguyen, L.H., Sullivan, A.J., Astratov, V.N.: Convexification and experimental data for a 3D inverse scattering problem with the moving point source. Inverse Prob. 36(8), 085007 (2020). https://doi.org/10.1088/1361-6420/ab95aa

    Article  MathSciNet  MATH  Google Scholar 

  21. Klibanov, M., Nguyen, L.H., Tran, H.V.: Numerical viscosity solutions to Hamilton-Jacobi equations via a Carleman estimate and the convexification method. J. Comput. Phys. 451, 110828 (2022). https://doi.org/10.1016/j.jcp.2021.110828

    Article  MathSciNet  MATH  Google Scholar 

  22. Le, T.T., Klibanov, M.V., Nguyen, L.H., Sullivan, A., Nguyen, L.: Carleman contraction mapping for a 1D inverse scattering problem with experimental time-dependent data. Inverse Prob. 38(4), 045002 (2022). https://doi.org/10.1088/1361-6420/ac50b8

    Article  MathSciNet  MATH  Google Scholar 

  23. Guimarães, O., Labecca, W., Piqueira, J.R.: Tensor solutions in irregular domains: Eigenvalue problems. Math. Comput. Simul. 190, 110–130 (2021). https://doi.org/10.1016/j.matcom.2021.05.019

    Article  MathSciNet  MATH  Google Scholar 

  24. Cao, L.-Q., Luo, J.-L.: Multiscale numerical algorithm for the elliptic eigenvalue problem with the mixed boundary in perforated domains. Appl. Numer. Math. 58(9), 1349–1374 (2008). https://doi.org/10.1016/j.apnum.2007.07.009

    Article  MathSciNet  MATH  Google Scholar 

  25. Grebenkov, D.S., Nguyen, B.-T.: Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55(4), 601–667 (2013). https://doi.org/10.1137/120880173

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

V.A.K. thanks Prof. Dr. Roselyn Williams and Prof. Dr. Desmond Stephens (Tallahassee, USA) for their support during the time V.A.K working at Florida A &M University. N.D.T. acknowledges Dr. Nguyen Thanh Long for the wholehearted guidance during his study at University of Science, and thanks Mr. Pham Truong Hoang Nhan for helpful discussions. The authors are thankful to Prof. Dr. Bruno Despres (Paris, France) for addressing the well-posedness of system (6).

Funding

This work was supported by the Faculty Research Awards Program (FRAP) at Florida A &M University, under the project “Approximation of a time-reversed reaction-diffusion system in cancer cell population dynamics” (007633).

Author information

Authors and Affiliations

Authors

Contributions

V.A.K. and N.D.T. organized and wrote this manuscript. V.A.K., N.D.T and A.G. contributed to all the steps of the proofs in this research together. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vo Anh Khoa.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent for publication

Not applicable.

Human or animal rights

Not applicable.

Additional information

Communicated by Gunnar Martinsson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoa, V.A., Thuc, N.D. & Gunaratne, A. Analysis and simulation of a variational stabilization for the Helmholtz equation with noisy Cauchy data. Bit Numer Math 63, 37 (2023). https://doi.org/10.1007/s10543-023-00978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00978-8

Keywords

Mathematics Subject Classification

Navigation