Skip to main content
Log in

Towards stability results for global radial basis function based quadrature formulas

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

Quadrature formulas (QFs) based on radial basis functions (RBFs) have become an essential tool for multivariate numerical integration of scattered data. Although numerous works have been published on RBF-QFs, their stability theory can still be considered as underdeveloped. Here, we strive to pave the way towards a more mature stability theory for global and function-independent RBF-QFs. In particular, we prove stability of these for compactly supported RBFs under certain conditions on the shape parameter and the data points. As an alternative to changing the shape parameter, we demonstrate how the least-squares approach can be used to construct stable RBF-QFs by allowing the number of data points used for numerical integration to be larger than the number of centers used to generate the RBF approximation space. Moreover, it is shown that asymptotic stability of many global RBF-QFs is independent of polynomial terms, which are often included in RBF approximations. While our findings provide some novel conditions for stability of global RBF-QFs, the present work also demonstrates that there are still many gaps to fill in future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not applicable.

Notes

  1. Henceforth, we will refer to these as “RBF-QFs”.

  2. For polyharmonic splines, it is common practice to not include a shape parameter in (1). For simplicity, we still use (1) and set \(\varepsilon _n = 1\), \(n=1,\dots ,n\), in this case.

  3. The solution of (10) can be interpreted as the solution of an equality constrained linear optimization problem [5], where \(\textbf{v}\) plays the role of a Lagrange multiplier.

  4. Examples for equidistributed sequences include low-discrepancy points [14, 24, 47, 71] used in quasi-Monte Carlo methods, such as the Halton points [44].

  5. \(X_N\) is \(\mathcal {S}_{M,d}\)-unisolvent, for instance, when the kernel \(\varphi \) is conditionally positive definite of order d and \(X_N\) is \(\mathbb {P}_{d}(\varOmega )\)-unisolvent, which is a common assumption to ensure uniqueness of RBF interpolants.

  6. P having full rank means that P has full column rank, i.e., the columns of P are linearly independent. This is equivalent to the set of data points being \(\mathbb {P}_d(\varOmega )\)-unisolvent.

  7. See https://github.com/jglaubitz/stability_RBF_CFs.

  8. Assuming the sequence of points is dense in \(\varOmega \).

  9. For a function from the appropriate native function space, the \(L^\infty (\varOmega )\)-error between the function and its RBF interpolant is in \(\mathcal {O}( \exp ( -C \log h_\textrm{max}(X_N) / h_\textrm{max}(X_N) ) )\); see [98].

  10. In Fig. 10a the cubic PHS RBF-QF first shows third-order convergence before it then settles for second-order convergence. We believe that the observed initial third-order decrease in the error is a combination of the second-order approximation rate of the cubic PHS-RBF interpolant and the decreasing Lebesgue constant \(\Vert C_N\Vert _{\infty }\) in (11). Once the QF is stable (\(\Vert C_N\Vert _{\infty } = \Vert I\Vert _{\infty }\)), the second-order approximation rate dominates the error of the QF, and we thus start to observe second-order convergence.

References

  1. Ames, W.F.: Numerical Methods for Partial Differential Equations. Academic Press, London (2014)

    Google Scholar 

  2. Aziz, I., Khan, W., et al.: Numerical integration of multi-dimensional highly oscillatory, gentle oscillatory and non-oscillatory integrands based on wavelets and radial basis functions. Eng. Anal. Bound. Elem. 36(8), 1284–1295 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Melenk, J.M.: The partition of unity method. Int. J. Numer. Methods Eng. 40(4), 727–758 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Bayona, V.: Comparison of moving least squares and RBF + poly for interpolation and derivative approximation. J. Sci. Comput. 81(1), 486–512 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Bayona, V.: An insight into RBF-FD approximations augmented with polynomials. Comput. Math. Appl. 77(9), 2337–2353 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Bos, L., Caliari, M., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143(1), 15–25 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Bos, L., De Marchi, S.: Univariate radial basis functions with compact support cardinal functions. East J. Approx. 14(1), 69 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Bos, L., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at the Padua points: the ideal theory approach. Numer. Math. 108(1), 43–57 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Brass, H., Petras, K.: Quadrature Theory: The Theory of Numerical Integration on a Compact Interval. Mathematical Surveys and Monographs, vol. 178. AMS, Providence (2011)

    MATH  Google Scholar 

  10. Briol, F.X., Oates, C.J., Girolami, M., Osborne, M.A., Sejdinovic, D.: Probabilistic integration: a role in statistical computation? Stat. Sci. 34(1), 1–22 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Brutman, L.: Lebesgue functions for polynomial interpolation: a survey. Ann. Numer. Math. 4, 111–128 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Buhmann, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  14. Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 1998, 1–49 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Cavoretto, R., De Rossi, A., Sommariva, A., Vianello, M.: RBFCUB: a numerical package for near-optimal meshless cubature on general polygons. Appl. Math. Lett. 125, 107704 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Cohen, A., Davenport, M.A., Leviatan, D.: On the stability and accuracy of least squares approximations. Found. Comput. Math. 13(5), 819–834 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Cohen, A., Migliorati, G.: Optimal weighted least-squares methods. SMAI J. Comput. Math. 3, 181–203 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Cools, R.: Constructing cubature formulae: the science behind the art. Acta Numer. 6, 1–54 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Cools, R.: An Encyclopaedia of cubature formulas. J. Complex. 19(3), 445–453 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Cools, R., Mysovskikh, I., Schmid, H.: Cubature formulae and orthogonal polynomials. J. Comput. Appl. Math. 127(1–2), 121–152 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Courier Corporation, North Chelmsford (2007)

    MATH  Google Scholar 

  22. De Marchi, S.: On optimal center locations for radial basis function interpolation: computational aspects. Rend. Splines Radial Basis Funct. Appl. 61(3), 343–358 (2003)

    MathSciNet  MATH  Google Scholar 

  23. De Marchi, S., Schaback, R.: Stability of kernel-based interpolation. Adv. Comput. Math. 32(2), 155–161 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Engels, H.: Numerical Quadrature and Cubature. Academic Press, London (1980)

    MATH  Google Scholar 

  26. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Proceedings of Chamonix, vol. 1997, pp. 1–8. Vanderbilt University Press, Nashville (1996)

  27. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  28. Flyer, N., Barnett, G.A., Wicker, L.J.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Folland, G.B.: How to integrate a polynomial over a sphere. Am. Math. Mon. 108(5), 446–448 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions with Applications to the Geosciences. SIAM, Philadelphia (2015)

    MATH  Google Scholar 

  31. Fornberg, B., Flyer, N.: Solving PDEs with radial basis functions. Acta Numer. 24, 215–258 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Fuselier, E., Hangelbroek, T., Narcowich, F.J., Ward, J.D., Wright, G.B.: Kernel based quadrature on spheres and other homogeneous spaces. Numer. Math. 127(1), 57–92 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Genz, A.: Testing multidimensional integration routines. In: Proceedings of International Conference on Tools, Methods and Languages for Scientific and Engineering Computation, pp. 81–94 (1984)

  34. Glasserman, P.: Monte Carlo Methods in Financial Engineering, vol. 53. Springer, Berlin (2013)

    MATH  Google Scholar 

  35. Glaubitz, J.: Shock Capturing and High-Order Methods for Hyperbolic Conservation Laws. Logos Verlag Berlin GmbH, Berlin (2020)

    MATH  Google Scholar 

  36. Glaubitz, J.: Stable high order quadrature rules for scattered data and general weight functions. SIAM J. Numer. Anal. 58(4), 2144–2164 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Glaubitz, J.: Stable high-order cubature formulas for experimental data. J. Comput. Phys. 447, 110693 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Glaubitz, J.: Construction and application of provable positive and exact cubature formulas. IMA J. Numer. Anal. (2022). https://doi.org/10.1093/imanum/drac017.Drac017

    Article  Google Scholar 

  39. Glaubitz, J., Gelb, A.: Stabilizing radial basis function methods for conservation laws using weakly enforced boundary conditions. J. Sci. Comput. 87(2), 1–29 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Glaubitz, J., Le Meledo, E., Öffner, P.: Towards stable radial basis function methods for linear advection problems. Comput. Math. Appl. 85, 84–97 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Glaubitz, J., Nordström, J., Öffner, P.: Energy-stable global radial basis function methods on summation-by-parts form. arXiv:2204.03291 (2022)

  42. Glaubitz, J., Öffner, P.: Stable discretisations of high-order discontinuous Galerkin methods on equidistant and scattered points. Appl. Numer. Math. 151, 98–118 (2020)

    MathSciNet  MATH  Google Scholar 

  43. Haber, S.: Numerical evaluation of multiple integrals. SIAM Rev. 12(4), 481–526 (1970)

    MathSciNet  MATH  Google Scholar 

  44. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals. Numer. Math. 2(1), 84–90 (1960)

    MathSciNet  MATH  Google Scholar 

  45. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Google Scholar 

  46. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  47. Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura Appl. 54(1), 325–333 (1961)

    MathSciNet  MATH  Google Scholar 

  48. Huybrechs, D.: Stable high-order quadrature rules with equidistant points. J. Comput. Appl. Math. 231(2), 933–947 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Ibrahimoglu, B.A.: Lebesgue functions and Lebesgue constants in polynomial interpolation. J. Inequal. Appl. 2016(1), 1–15 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Iske, A.: On the approximation order and numerical stability of local Lagrange interpolation by polyharmonic splines. In: Modern Developments in Multivariate Approximation, pp. 153–165. Springer (2003)

  51. Iske, A.: Radial basis functions: basics, advanced topics and meshfree methods for transport problems. Rend. Sem. Mat. Univ. Pol. Torino 61(3), 247–285 (2003)

    MathSciNet  MATH  Google Scholar 

  52. Iske, A.: Scattered data approximation by positive definite kernel functions. Rend. Sem. Mat. Univ. Pol. Torino 69(3), 217–246 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Iske, A., Sonar, T.: On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions. Numer. Math. 74(2), 177–201 (1996)

    MathSciNet  MATH  Google Scholar 

  54. Kansa, E., Hon, Y.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39(7–8), 123–138 (2000)

    MathSciNet  MATH  Google Scholar 

  55. Kansa, E.J.: Multiquadrics: a scattered data approximation scheme with applications to computational fluid-dynamics: II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)

    MathSciNet  MATH  Google Scholar 

  56. Karvonen, T., Kanagawa, M., Särkkä, S.: On the positivity and magnitudes of Bayesian quadrature weights. Stat. Comput. 29(6), 1317–1333 (2019)

    MathSciNet  MATH  Google Scholar 

  57. Krommer, A.R., Ueberhuber, C.W.: Computational Integration. SIAM, Philadelphia (1998)

    MATH  Google Scholar 

  58. Krylov, V.I., Stroud, A.H.: Approximate Calculation of Integrals. Courier Corporation, North Chelmsford (2006)

    Google Scholar 

  59. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  60. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46(5–6), 891–902 (2003)

    MathSciNet  MATH  Google Scholar 

  61. Lasserre, J.B.: Simple formula for integration of polynomials on a simplex. BIT Numer. Math. 61(2), 523–533 (2021)

    MathSciNet  MATH  Google Scholar 

  62. Manly, B.F.: Randomization, Bootstrap and Monte Carlo Methods in Biology, vol. 70. CRC Press, Boca Raton (2006)

    MATH  Google Scholar 

  63. Maxwell, J.C.: On approximate multiple integration between limits of summation. In: Proceedings of the Cambridge Philosophical Society, vol. 3, pp. 39–47 (1877)

  64. Mehri, B., Jokar, S.: Lebesgue function for multivariate interpolation by radial basis functions. Appl. Math. Comput. 187(1), 306–314 (2007)

    MathSciNet  MATH  Google Scholar 

  65. Micchelli, C.A., Rivlin, T.J.: A survey of optimal recovery. In: Micchelli, C.A., Rivlin, T.J. (eds.) Optimal Estimation in Approximation Theory, pp. 1–54. Plenum Press, New York (1977)

    Google Scholar 

  66. Migliorati, G., Nobile, F.: Stable high-order randomized cubature formulae in arbitrary dimension. J. Approx. Theory 275, 105706 (2022)

    MathSciNet  MATH  Google Scholar 

  67. Minka, T.P.: Deriving quadrature rules from Gaussian processes. Technical report, Statistics Department, Carnegie Mellon University (2000)

  68. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  69. Mysovskikh, I.: The approximation of multiple integrals by using interpolatory cubature formulae. In: Quantitative Approximation, pp. 217–243. Elsevier (1980)

  70. Mysovskikh, I.P.: Cubature formulae that are exact for trigonometric polynomials. In: Cools, R., Schmid, H.J. (eds.) TW Reports (2001)

  71. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  72. O’Hagan, A.: Bayes–Hermite quadrature. J. Stat. Plan. Inference 29(3), 245–260 (1991)

    MathSciNet  MATH  Google Scholar 

  73. Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A.: NIST Digital Library of Mathematical Functions. Release 1.1.1, March 15, 2021 (2021). http://dlmf.nist.gov/

  74. Platte, R.B., Trefethen, L.N., Kuijlaars, A.B.: Impossibility of fast stable approximation of analytic functions from equispaced samples. SIAM Rev. 53(2), 308–318 (2011)

    MathSciNet  MATH  Google Scholar 

  75. Punzi, A., Sommariva, A., Vianello, M.: Meshless cubature over the disk using thin-plate splines. J. Comput. Appl. Math. 221(2), 430–436 (2008)

    MathSciNet  MATH  Google Scholar 

  76. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, vol. 23. Springer, Berlin (2008)

    MATH  Google Scholar 

  77. Reeger, J.A.: Approximate integrals over the volume of the ball. J. Sci. Comput. 83, 45 (2020)

    MathSciNet  MATH  Google Scholar 

  78. Reeger, J.A., Fornberg, B.: Numerical quadrature over the surface of a sphere. Stud. Appl. Math. 137(2), 174–188 (2016)

    MathSciNet  MATH  Google Scholar 

  79. Reeger, J.A., Fornberg, B.: Numerical quadrature over smooth surfaces with boundaries. J. Comput. Phys. 355, 176–190 (2018)

    MathSciNet  MATH  Google Scholar 

  80. Reeger, J.A., Fornberg, B., Watts, M.L.: Numerical quadrature over smooth, closed surfaces. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2194), 20160401 (2016)

    MathSciNet  MATH  Google Scholar 

  81. Rudin, W.: Real and Complex Analysis. McGraw-Hill Education, New York (1987)

    MATH  Google Scholar 

  82. Shankar, V.: The overlapped radial basis function-finite difference (RBF-FD) method: a generalization of RBF-FD. J. Comput. Phys. 342, 211–228 (2017)

    MathSciNet  MATH  Google Scholar 

  83. Shu, C., Wu, Y.: Integrated radial basis functions-based differential quadrature method and its performance. Int. J. Numer. Meth. Fluids 53(6), 969–984 (2007)

    MATH  Google Scholar 

  84. Sommariva, A., Vianello, M.: Meshless cubature by Green’s formula. Appl. Math. Comput. 183(2), 1098–1107 (2006)

    MathSciNet  MATH  Google Scholar 

  85. Sommariva, A., Vianello, M.: Numerical cubature on scattered data by radial basis functions. Computing 76(3–4), 295 (2006)

    MathSciNet  MATH  Google Scholar 

  86. Sommariva, A., Vianello, M.: RBF moment computation and meshless cubature on general polygonal regions. Appl. Math. Comput. 409, 126375 (2021)

    MathSciNet  MATH  Google Scholar 

  87. Sommariva, A., Womersley, R.: Integration by rbf over the sphere. Applied Mathematics Report AMR05/17. University of New South Wales (2005)

  88. Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971)

    MATH  Google Scholar 

  89. Tominec, I., Larsson, E., Heryudono, A.: A least squares radial basis function finite difference method with improved stability properties. SIAM J. Sci. Comput. 43(2), A1441–A1471 (2021)

    MathSciNet  MATH  Google Scholar 

  90. Tominec, I., Nazarov, M., Larsson, E.: Stability estimates for radial basis function methods applied to time-dependent hyperbolic PDEs. arXiv:2110.14548 (2021)

  91. Trefethen, L.N.: Cubature, approximation, and isotropy in the hypercube. SIAM Rev. 59(3), 469–491 (2017)

    MathSciNet  MATH  Google Scholar 

  92. Trefethen, L.N.: Approximation Theory and Approximation Practice, Extended Edition. SIAM, Philadelphia (2019)

    Google Scholar 

  93. Trefethen, L.N.: Exactness of quadrature formulas. arXiv:2101.09501 (2021)

  94. van den Bos, L., Sanderse, B., Bierbooms, W.: Adaptive sampling-based quadrature rules for efficient Bayesian prediction. J. Comput. Phys. 417, 109537 (2020)

    MathSciNet  MATH  Google Scholar 

  95. Watts, M.L.: Radial basis function based quadrature over smooth surfaces. Theses and Dissertations (2016). https://scholar.afit.edu/etd/249

  96. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    MathSciNet  MATH  Google Scholar 

  97. Wendland, H.: Fast evaluation of radial basis functions: Methods based on partition of unity. In: Approximation Theory X: Wavelets, Splines, and Applications. Citeseer (2002)

  98. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  99. Weyl, H.: Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann. 77(3), 313–352 (1916)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Toni Karvonen for pointing out the connection between RBF-QFs and Bayesian quadrature. We also thank the anonymous reviewers for their helpful comments on an earlier manuscript draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Glaubitz.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Communicated by Elisabeth Larsson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by AFOSR #F9550-18-1-0316 and ONR #N00014-20-1-2595 (Glaubitz).

Disclaimer: The views expressed in this academic research paper are those of the authors and do not reflect the official policy or position of the United States Government or Department of Defense. In accordance with the Air Force Instruction 51-303, it is not copyrighted, but is the property of the United States government.

A Moments

A Moments

Henceforth, we provide the moments for different RBFs. The one-dimensional case is discussed in Sect. A.1, while two-dimensional moments are derived in Sect. A.2.

1.1 A.1 One-dimensional moments

Let us consider the one-dimensional case of \(\varOmega = [a,b]\) and distinct data points \(x_1,\dots ,x_N \in [a,b]\).

1.1.1 A.1.1 Gaussian RBF

For \(\varphi (r) = \exp ( - \varepsilon ^2 r^2 )\), the moment of the translated Gaussian RBF,

$$\begin{aligned} m_n = m(\varepsilon ,x_n,a,b) = \int _a^b \exp ( - \varepsilon ^2 | x - x_n |^2 ) \, \textrm{d}x, \end{aligned}$$
(31)

is given by

$$\begin{aligned} m_n = \frac{\sqrt{\pi }}{2 \varepsilon } \left[ \textrm{erf}( \varepsilon (b-x_n) ) - \textrm{erf}( \varepsilon (a-x_n) ) \right] . \end{aligned}$$

Here, \(\textrm{erf}(x) = 2/\sqrt{\pi } \int _0^x \exp ( -t^2 ) \, \textrm{d}t\) denotes the usual error function, [73, Section 7.2].

1.1.2 A.1.2 Polyharmonic splines

For \(\varphi (r) = r^k\) with odd \(k \in \mathbb {N}\), the moment of the translated PHS,

$$\begin{aligned} m_n = m(x_n,a,b) = \int _a^b \varphi ( x - x_n ) \, \textrm{d}x, \end{aligned}$$

is given by

$$\begin{aligned} m_n = \frac{1}{k+1} \left[ (a-x_n)^{k+1} + (b-x_n)^{k+1} \right] , \quad n=1,2,\dots ,N. \end{aligned}$$

For \(\varphi (r) = r^k \log r\) with even \(k \in \mathbb {N}\), on the other hand, we have

$$\begin{aligned} m_n = (x_n - a)^{k+1} \left[ \frac{\log ( x_n - a )}{k+1} - \frac{1}{(k+1)^2} \right] + (b - x_n)^{k+1} \left[ \frac{\log ( b - x_n )}{k+1} - \frac{1}{(k+1)^2} \right] . \end{aligned}$$

Note that for \(x_n = a\) the first term is zero, while for \(x_n = b\) the second term is zero.

1.2 A.2 Two-dimensional moments

Here, we consider the two-dimensional case, where the domain is given by a rectangular of the form \(\varOmega = [a,b] \times [c,d]\).

1.2.1 A.2.1 Gaussian RBF

For \(\varphi (r) = \exp ( - \varepsilon ^2 r^2 )\), the two-dimensional moments can be written as products of one-dimensional moments. In fact, we have

$$\begin{aligned} \int _a^b \int _c^d \exp ( - \varepsilon ^2 \Vert (x-x_n,y-y_n\Vert _2^2 ) = m(\varepsilon ,x_n,a,b) \cdot m(\varepsilon ,y_n,c,d). \end{aligned}$$

Here, the multiplicands on the right-hand side are the one-dimensional moments from (31).

1.2.2 A.2.2 Polyharmonic splines and other RBFs

If it is not possible to trace the two-dimensional moments back to the one-dimensional ones, we are in need of another approach. This is, for instance, the case for PHS. We start by noting that for a data points \((x_n,y_n) \in [a,b] \times [c,d]\) the corresponding moment can be rewritten as follows:

$$\begin{aligned} m(x_n,y_n) = \int _{a}^b \int _{c}^d \varphi ( \Vert (x-x_n,y-y_n)^T \Vert _2 ) \, \textrm{d}y \, \textrm{d}x = \int _{\tilde{a}}^{\tilde{b}} \int _{\tilde{c}}^{\tilde{d}} \varphi ( \Vert (x,y)^T \Vert _2 ) \, \textrm{d}y \, \textrm{d}x \end{aligned}$$

with translated boundaries \(\tilde{a} = a - x_n\), \(\tilde{b} = b - x_n\), \(\tilde{c} = c - y_n\), and \(\tilde{d} = d - y_n\). We are not aware of an explicit formula for such integrals for most popular RBFs readily available from the literature. That said, such formulas were derived in [78,79,80] (also see [95, Chapter 2.3]) for the integral of \(\varphi \) over a right triangle with vertices \((0,0)^T\), \((\alpha ,0)^T\), and \((\alpha ,\beta )^T\). Assuming \(\tilde{a}< 0 < \tilde{b}\) and \(\tilde{c}< 0 < \tilde{d}\), we therefore partition the shifted domain \({\tilde{\varOmega } = [\tilde{a},\tilde{b}] \times [\tilde{c},\tilde{d}]}\) into eight right triangles. Denoting the corresponding integrals by \(I_1, \dots , I_8\), the moment \(m(x_n,y_n)\) correspond to the sum of these integrals. The procedure is illustrated in Fig. 11.

Fig. 11
figure 11

Illustration of how the moments can be computed on a rectangle in two dimensions

Table 3 The reference integral \(I_{\text {ref}}(\alpha ,\beta )\)—see (32)—for some PHS

The special cases where one (or two) of the edges of the rectangle align with one of the axes can be treated similarly. However, in this case, a smaller subset of the triangles is considered. We leave the details to the reader, and note the following formula for the weights:

$$\begin{aligned} \begin{aligned} m(x_n,y_n)&= \left[ 1 - \delta _0\left( \tilde{b} \tilde{d}\right) \right] \left( I_1 + I_2 \right) + \left[ 1 - \delta _0\left( \tilde{a} \tilde{d}\right) \right] \left( I_3 + I_4 \right) \\&\quad + \left[ 1 - \delta _0\left( \tilde{a} \tilde{c}\right) \right] \left( I_5 + I_6 \right) + \left[ 1 - \delta _0\left( \tilde{b} \tilde{c}\right) \right] \left( I_7 + I_8 \right) \end{aligned} \end{aligned}$$

Here, \(\delta _0\) denotes the usual Kronecker delta defined as \(\delta _0(x) = 1\) if \(x = 0\) and \(\delta _0(x) = 0\) if \(x \ne 0\). The above formula holds for general \(\tilde{a}\), \(\tilde{b}\), \(\tilde{c}\), and \(\tilde{d}\). Note that all the right triangles can be rotated or mirrored in a way that yields a corresponding integral of the form

$$\begin{aligned} I_{\text {ref}}(\alpha ,\beta ) = \int _0^{\alpha } \int _0^{\frac{\beta }{\alpha }x} \varphi ( \Vert (x,y)^T \Vert _2 ) \, \textrm{d}y \, \textrm{d}x. \end{aligned}$$
(32)

More precisely, we have

$$\begin{aligned} \begin{aligned} I_1&= I_{\text {ref}}(\tilde{b},\tilde{d}), \quad I_2 = I_{\text {ref}}(\tilde{d},\tilde{b}), \quad I_3 = I_{\text {ref}}(\tilde{d},-\tilde{a}), \quad I_4 = I_{\text {ref}}(-\tilde{a},\tilde{d}), \\ I_5&= I_{\text {ref}}(-\tilde{a},-\tilde{c}), \quad I_6 = I_{\text {ref}}(-\tilde{c},-\tilde{a}), \quad I_7 = I_{\text {ref}}(-\tilde{c},\tilde{b}), \quad I_8 = I_{\text {ref}}(\tilde{b},-\tilde{c}). \end{aligned} \end{aligned}$$

Finally, explicit formulas of the reference integral \(I_{\text {ref}}(\alpha ,\beta )\) over the right triangle with vertices \((0,0)^T\), \((\alpha ,0)^T\), and \((\alpha ,\beta )^T\) for some PHS can be found in Table 3. Similar formulas are also available, for instance, for Gaussian, multiquadric and inverse multiquadric RBFs.

We note that the approach presented above is similar to the one in [85], where the domain \(\varOmega = [-1,1]^2\) was considered. Later, the same authors extended their findings to simple polygons [84] using the Gauss–Grenn theorem. Also see the recent work [86], addressing polygonal regions that may be nonconvex or even multiply connected, and references therein. It would be of interest to see if these approaches also carry over to computing products of RBFs corresponding to different centers or products of RBFs and their partial derivatives, again corresponding to different centers. Such integrals occur as elements of mass and stiffness matrices in numerical PDEs. In particular, they are desired to construct linearly energy stable (global) RBF methods for hyperbolic conservation laws [35, 39, 40].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glaubitz, J., Reeger, J.A. Towards stability results for global radial basis function based quadrature formulas. Bit Numer Math 63, 6 (2023). https://doi.org/10.1007/s10543-023-00956-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10543-023-00956-0

Keywords

Mathematics Subject Classification

Navigation