Skip to main content
Log in

Numerical evaluation of ODE solutions by Monte Carlo enumeration of Butcher series

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present an algorithm for the numerical solution of ordinary differential equations by random enumeration of the Butcher trees used in the implementation of the Runge–Kutta method. Our Monte Carlo scheme allows for the direct numerical evaluation of an ODE solution at any given time within a certain interval, without iteration through multiple time steps. In particular, this approach does not involve a discretization step size, and it does not require the truncation of Taylor series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures. Invent. Math. 215, 1039–1156 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.C.: Coefficients for the study of Runge–Kutta integration processes. J. Austral. Math. Soc. 3, 185–201 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Butcher, J.C.: Trees and numerical methods for ordinary differential equations. Numer. Algorithms 53, 153–170 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 3rd edn. Wiley, Chichester (2016)

    Book  MATH  Google Scholar 

  5. Cayley, A.: On the theory of the analytical forms called trees. Philos. Mag. 13(85), 172–176 (1857)

    Article  Google Scholar 

  6. Connes, A., Kreimer, D.: Lessons from quantum field theory: Hopf algebras and spacetime geometries. Lett. Math. Phys. 48, 85–96 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chakraborty, S., López-Mimbela, J.A.: Nonexplosion of a class of semilinear equations via branching particle representations. Adv. Appl. Probab. 40, 250–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deuflhard, P., Bornemann, F.: Scientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics, vol. 42. Springer, New York (2002)

    Book  MATH  Google Scholar 

  9. Fossy, L.: Algebraic structures on typed decorated rooted trees. SIGMA 17, 1–28 (2021)

    MathSciNet  Google Scholar 

  10. Gubinelli, M.: Ramification of rough paths. J. Differ. Equ. 248(4), 693–721 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Henry-Labordère, P., Oudjane, N., Tan, X., Touzi, N., Warin, X.: Branching diffusion representation of semilinear PDEs and Monte Carlo approximation. Ann. Inst. H. Poincaré Probab. Stat. 55(1), 184–210 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Volume 31 of Springer Series in Computational Mathematics, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  13. Ikeda, N., Nagasawa, M., Watanabe, S.: Branching Markov processes I, II, III. J. Math. Kyoto Univ. 8–9, 233–278, 365–410, 95–160 (1968–1969)

  14. López-Mimbela, J.A.: A probabilistic approach to existence of global solutions of a system of nonlinear differential equations. In: Fourth Symposium on Probability Theory and Stochastic Processes (Spanish) (Guanajuato, 1996), Volume 12 of Aportaciones Mat. Notas Investigación, pp. 147–155. Soc. Mat. Mexicana, México (1996)

  15. Mazza, C.: Simply generated trees, \(B\)-series and Wigner processes. Random Struct. Algorithms 25(3), 293–310 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28(3), 323–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. McLachlan, R.I., Modin, K., Munthe-Kaas, H., Verdier, O.: Butcher series: a story of rooted trees and numerical methods for evolution equations. Asia Pac. Math. Newsl. 7(1), 1–11 (2017)

    MathSciNet  Google Scholar 

  18. Nagasawa, M., Sirao, T.: Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation. Trans. Am. Math. Soc. 139, 301–310 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. Penent, G., Privault, N.: Existence and probabilistic representation of the solutions of semilinear parabolic PDEs with fractional Laplacians. Stoch. Partial Differ. Equ. Anal. Comput. 10, 446–474 (2022)

    MathSciNet  MATH  Google Scholar 

  20. Selk, Z., Harsha, H.: A Feynman–Kac type theorem for ODEs: solutions of second order ODEs as modes of diffusions. Preprint arXiv:2106.08525 (2021)

  21. Skilling, J.: Bayesian solution of ordinary differential equations. In: Smith, C.R., Erickson, G.J., Neudorfer, P.O. (eds.) Proceedings of the Eleventh International Workshop on Maximum Entropy and Bayesian Methods of Statistical Analysis, Volume 50 of Fundamental Theories of Physics, pp. 23–38. Kluwer Academic Publishers Group, Dordrecht (1992)

    Google Scholar 

  22. Skorokhod, A.V.: Branching diffusion processes. Teor. Verojatnost. i. Primenen. 9, 492–497 (1964)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by the Ministry of Education, Singapore, under its Tier 2 Grant MOE-T2EP20120-0005. We thank Jiang Yu Nguwi for producing the Python code dealing with systems of ODEs, and two anonymous referees for useful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Privault.

Additional information

Communicated by Charles-Edouard Bréhier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (zip 60 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penent, G., Privault, N. Numerical evaluation of ODE solutions by Monte Carlo enumeration of Butcher series. Bit Numer Math 62, 1921–1944 (2022). https://doi.org/10.1007/s10543-022-00936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-022-00936-w

Keywords

Mathematics Subject Classification

Navigation