Skip to main content
Log in

On the quadrature exactness in hyperinterpolation

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates the role of quadrature exactness in the approximation scheme of hyperinterpolation. Constructing a hyperinterpolant of degree n requires a positive-weight quadrature rule with exactness degree 2n. We examine the behavior of such approximation when the required exactness degree 2n is relaxed to \(n+k\) with \(0<k\le n\). Aided by the Marcinkiewicz–Zygmund inequality, we affirm that the \(L^2\) norm of the exactness-relaxing hyperinterpolation operator is bounded by a constant independent of n, and this approximation scheme is convergent as \(n\rightarrow \infty \) if k is positively correlated to n. Thus, the family of candidate quadrature rules for constructing hyperinterpolants can be significantly enriched, and the number of quadrature points can be considerably reduced. As a potential cost, this relaxation may slow the convergence rate of hyperinterpolation in terms of the reduced degrees of quadrature exactness. Our theoretical results are asserted by numerical experiments on three of the best-known quadrature rules: the Gauss quadrature, the Clenshaw–Curtis quadrature, and the spherical t-designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. An, C., Wu, H.N.: Lasso hyperinterpolation over general regions. SIAM J. Sci. Comput. 43(6), A3967–A3991 (2021). https://doi.org/10.1137/20M137793X

    Article  MathSciNet  MATH  Google Scholar 

  2. An, C., Chen, X., Sloan, I.H., Womersley, R.S.: Well conditioned spherical designs for integration and interpolation on the two-sphere. SIAM J. Numer. Anal. 48(6), 2135–2157 (2010). https://doi.org/10.1137/100795140

    Article  MathSciNet  MATH  Google Scholar 

  3. An, C., Chen, X., Sloan, I.H., Womersley, R.S.: Regularized least squares approximations on the sphere using spherical designs. SIAM J. Numer. Anal. 50(3), 1513–1534 (2012). https://doi.org/10.1137/110838601

    Article  MathSciNet  MATH  Google Scholar 

  4. Caliari, M., De Marchi, S., Vianello, M.: Hyperinterpolation on the square. J. Comput. Appl. Math. 210(1–2), 78–83 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caliari, M., De Marchi, S., Vianello, M.: Hyperinterpolation in the cube. Comput. Math. Appl. 55(11), 2490–2497 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chernih, A., Sloan, I.H., Womersley, R.S.: Wendland functions with increasing smoothness converge to a Gaussian. Adv. Comput. Math. 40(1), 185–200 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dai, F.: On generalized hyperinterpolation on the sphere. Proc. Amer. Math. Soc. 134(10), 2931–2941 (2006). https://doi.org/10.1090/S0002-9939-06-08421-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, P.J., Rabinowitz, P.: Methods of numerical integration, 2nd edn. Academic Press Inc, Orlando, FL, Computer Science and Applied Mathematics (1984)

    MATH  Google Scholar 

  10. Delsarte, P., Goethals, J.M., Seidel, J.J.: Spherical codes and designs. Geom Dedicata 6, 363–388 (1977). https://doi.org/10.1007/bf03187604

    Article  MathSciNet  MATH  Google Scholar 

  11. DeVore, R., Foucart, S., Petrova, G., Wojtaszczyk, P.: Computing a quantity of interest from observational data. Constr. Approx. 49(3), 461–508 (2019). https://doi.org/10.1007/s00365-018-9433-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Filbir, F., Mhaskar, H.N.: Marcinkiewicz-Zygmund measures on manifolds. J. Complexity 27(6), 568–596 (2011). https://doi.org/10.1016/j.jco.2011.03.002

    Article  MathSciNet  MATH  Google Scholar 

  13. Gautschi, W.: How and how not to check Gaussian quadrature formulae. BIT 23(2), 209–216 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen, O., Atkinson, K., Chien, D.: On the norm of the hyperinterpolation operator on the unit disc and its use for the solution of the nonlinear Poisson equation. IMA J. Numer. Anal. 29(2), 257–283 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hesse, K., Sloan, I.H.: Hyperinterpolation on the sphere. In: Frontiers in Interpolation and Approximation, Pure Appl. Math. (Boca Raton), vol 282, Chapman & Hall/CRC, Boca Raton, pp. 213–248 (2007)

  16. Le Gia, T., Sloan, I.: The uniform norm of hyperinterpolation on the unit sphere in an arbitrary number of dimensions. Constr. Approx. 17(2), 249–265 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marcinkiewicz, J., Zygmund, A.: Sur les fonctions indépendantes. Fund. Math. 29(1), 60–90 (1937)

    Article  MATH  Google Scholar 

  18. Mhaskar, H.N., Narcowich, F.J., Ward, J.D.: Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comp. 70(235), 1113–1130 (2001). https://doi.org/10.1090/S0025-5718-00-01240-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Reimer, M.: Generalized hyperinterpolation on the sphere and the Newma-Shapiro operators. Constr. Approx. 18(2), 183–204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83(2), 238–254 (1995). https://doi.org/10.1006/jath.1995.1119

    Article  MathSciNet  MATH  Google Scholar 

  21. Sloan, I.H., Womersley, R.S.: The uniform error of hyperinterpolation on the sphere. In: Advances in Multivariate Approximation, Mathematical Research, vol. 107, pp. 289–306. Wiley-VCH, Berlin (1999)

    Google Scholar 

  22. Sloan, I.H., Womersley, R.S.: Filtered hyperinterpolation: a constructive polynomial approximation on the sphere. GEM. Int. J. Geomath. 3(1), 95–117 (2012). https://doi.org/10.1007/s13137-011-0029-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Sommariva, A., Vianello, M.: Numerical hyperinterpolation over spherical triangles. Math. Comput. Simulation. 190, 15–22 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM. Rev. 50(1), 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Trefethen, L.N.: Exactness of quadrature formulas. SIAM. Rev. 64(1), 132–150 (2022). https://doi.org/10.1137/20M1389522

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, H., Wang, K., Wang, X.: On the norm of the hyperinterpolation operator on the \(d\)-dimensional cube. Comput. Math. Appl. 68(5), 632–638 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995). https://doi.org/10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank both referees for their valuable suggestions and remarks which improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congpei An.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Communicated by Stefano De Marchi.

Dedicated to Ian H. Sloan on the occasion of his 85th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first author is partially supported by Tianfu Emei Talent plan (No. 1914)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, C., Wu, HN. On the quadrature exactness in hyperinterpolation. Bit Numer Math 62, 1899–1919 (2022). https://doi.org/10.1007/s10543-022-00935-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-022-00935-x

Keywords

Mathematics Subject Classification

Navigation