Skip to main content
Log in

On a Method of Constructing Quadrature Formulas for Computing Hypersingular Integrals

  • Published:
Numerical Analysis and Applications Aims and scope Submit manuscript

An Erratum to this article was published on 08 December 2022

This article has been updated

Abstract

This paper is devoted to constructing quadrature formulas for evaluating singular and hypersingular integrals. For evaluating integrals with weights \((1-t)^{\gamma_1}(1+t)^{\gamma_2}\)\(\gamma_1, \gamma_2>-1\) defined on \([-1,1]\) we have constructed quadrature formulas uniformly converging on [\(-1,1\)] to the original integral with weights \((1-t)^{\gamma_1} (1+t)^{\gamma_2}\)\(\gamma_1,\gamma_2 \geq -1/2\) and converging to the original integral for \(-1<t<1\) with weights \((1-t)^{\gamma_1} (1+t)^{\gamma_2}\)\(\gamma_1,\gamma_2 > -1\). In the latter case, a sequence of quadrature formulas converges to the integral uniformly on [\(-1+\delta,1-\delta\)], where \(\delta>0\) is arbitrarily small. We propose a method for constructing and estimating the errors of quadrature formulas to evaluate hypersingular integrals by transforming quadrature formulas to evaluate singular integrals. We also propose a method for estimating the errors of quadrature formulas for singular integral evaluation based on approximation theory methods. The results obtained have been extended to hypersingular integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

REFERENCES

  1. Saakyan, A.V., Quadrature Formulas of Maximum Algebraic Accuracy for Cauchy Type Integrals with Complex Exponents of the Jacobi Weight Function, Izv. RAN. Mekh. Tverdogo Tela, 2012, no. 6, pp. 116–121.

  2. Sahakyan, A.V. and Amirjanyan, H.A., Method of Mechanical Quadratures for Solving Singular Integral Equations of Various Types, J. Phys.: Conf. Series, 2018, vol. 991; ID Number: 012070; DOI: 10.1088/1742-6596/991/1/012070

    Article  Google Scholar 

  3. Ivanov, V.V., Teoriya priblizhonnykh metodov i ee primenenie k chislennomy resheniyu singulyarnykh integralnykh uravnenii (Theory of Approximate Methods and its Application to the Numerical Solution of Singular Integral Equations), Kiev: Naukova dumka, 1968.

    Google Scholar 

  4. Lifanov, I.K., Metod singulyarnykh integralnykh uravnenii i chislennyi eksperiment (The Method of Singular Integral Equations and Numerical Experiment), Moscow: Yanus, 1995.

    Google Scholar 

  5. Boykov, I.V., Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov, Ch. 1: Singulyarnye integraly (Approximate Methods for Computing Singular and Hypersingular Integrals, Part 1: Singular Integrals), Penza: Penza State Universiity, 2005.

    Google Scholar 

  6. Khubezhty, Sh.S., Quadrature Formulas for Singular Integrals and Some of Their Applications), Itogi Nauki. Yug Rossii, no. 3, Vladikavkaz: YUMI, 2012.

  7. Korsunsky, A.M., Gauss–Chebyshev Quadrature Formulae for Strongly Singular Integrals, Quart. Appl. Math.,1998, vol. 56, pp. 461–472.

    Article  MathSciNet  MATH  Google Scholar 

  8. Boykov, I.V., Numerical Methods of Computation of Singular and Hypersingular Integrals, J. Math. Math. Sci., 2001, vol. 28, pp. 127–179.

    Article  MathSciNet  Google Scholar 

  9. Chan, Y.-S., Fannjiang, A.C., and Paulino, G.H., Integral Equations with Hypersingular Kernels-Theory and Applications to Fracture Mechanics, Int. J. Engin. Sci., 2003, vol. 41, pp. 683–720.

    Article  MathSciNet  MATH  Google Scholar 

  10. Boykov, I.V., Accuracy Optimal Methods for Evaluating Hypersingular Integrals, I.V. Boykov, E.S. Ventsel, and A.I. Boykova, Appl. Numer., 2009, vol. 59, no. 6, pp. 1366–1385.

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, X., Wu, J., and Yu, D., Superconvergence of the Composite Simpson’s Rule for a Certain Finite-Part Integral and Its Applications, J. Comput. Appl. Math., 2009, vol. 223, iss. 2, pp. 598–613.

    Article  MathSciNet  MATH  Google Scholar 

  12. Plieva, L.Y., Interpolation-Type Quadrature Formulas for Hypersingular Integrals in the Interval Of Integration, Num. An. Appl., 2016, vol. 9, no. 4, pp. 326–334; DOI: 10.1134/S1995423916040066

    Article  MathSciNet  MATH  Google Scholar 

  13. De Bonis, M.C. and Occorsio, D., Numerical Methods for Hypersingular Integrals on the Real Line, Dolomites Res. Not. Approx., 2017, vol. 10, pp. 97–117.

  14. Vainikko, G.M., Lifanov, L.N., and Poltavsky, I.K., Chislennye metody v gipersingulyarnykh integralnykh uravneniyakh i ikh prilozheniya (Numerical Methods in Hypersingular Integral Equations and Their Applications), Moscow: Yanus-K, 2001.

    Google Scholar 

  15. Boykov, I.V., Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov, Ch. 2: Gipersingulyarnye integraly (Approximate Methods for Computing Singular and Hypersingular Integrals, Part 2: Hypersingular Integrals), Penza: Penza State Universiity, 2009.

    Google Scholar 

  16. Boykov, I.V. and Aykashev, P.V., Approximate Methods for Calculating Hypersingular Integrals, University Proc., Volga Region, Phys. Math. Sci., 2021, no. 1, pp. 66–84; DOI: 10.21685/2072-3040-2021-1-6

    Article  Google Scholar 

  17. Dzyadyk, V.K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami (Introduction into the Theory of Uniform Approximation of Functions by Polynomials), Moscow: Nauka, 1977.

    MATH  Google Scholar 

  18. Timan, A.F., Teoriya priblizheniya funktsii deistvitel’nogo peremennogo (Theory of Approximation of Functions of a Real Variable), Moscow: Fizmatgiz, 1960.

    Google Scholar 

  19. Gaier, D., Konstruktive Methoden der Konformen Abbildung, Berlin-Heidelberd: Springer, 1964.

    Book  MATH  Google Scholar 

  20. Natanson, I.P., Konstruktivnaya teoriya funktsii (Constructive Theory of Functions), Moscow–Leningrad: GITTL, 1949.

    Google Scholar 

  21. Zygmund, A., Trigonometricheskie ryady (Trigonometric Series), vol. 1, Moscow: Mir, 1965.

    Google Scholar 

  22. Lu, S., Ding, Y., and Yan, D., Singular Integrals and Related Topics, New Jersly: Word Scientific, 2007.

    Book  MATH  Google Scholar 

  23. Capobianco, M.R. and Criscuolo, G., On Quadrature for Cauchy Principal Value Integrals of Oscillatory Functions, J. Comput. Appl. Math., 2003, vol. 156, no. 2, pp. 471–486; DOI: 10.1016/S0377-0427(03)00388-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Boykova, A.I., On a Class of Interpolation Polynomials, in Optimal’nye metody i ikh primenenie (Optimal Methods and Their Applications), Penza: Penza State Technological University, 1996, pp. 141–148.

  25. Suetin, P.K., Klassicheskie ortogonal’nye mnogochleny, (Classical Orthogonal Polynomials), Moscow: Nauka, 1976.

    MATH  Google Scholar 

  26. Akhiezer, N.I., On Some Inversion Formulae for Singular Integrals, Izv. Akad. Nauk SSSR. Ser. Mat., 1945, vol. 9, no. 4, pp. 275–290.

    MathSciNet  MATH  Google Scholar 

  27. Szego, G., Ortogonal’nye mnogochleny (Orthogonal Polynomials), Moscow: GIFML, 1962.

    Google Scholar 

  28. Sanikidze, D.G., Quadrature Processes for Integrals of Cauchy Type, Mat. Zam., 1972, vol. 11, no. 5, pp. 517–526.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V Boikov or A. I Boikova.

Additional information

Translated from Sibirskii Zhurnal Vychislitel’noi Matematiki, 2022, Vol. 25, No. 3, pp. 249-265. https://doi.org/10.15372/SJNM20220303.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boikov, I.V., Boikova, A.I. On a Method of Constructing Quadrature Formulas for Computing Hypersingular Integrals. Numer. Analys. Appl. 15, 203–218 (2022). https://doi.org/10.1134/S199542392203003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199542392203003X

Keywords

Navigation