Skip to main content
Log in

Uniformly accurate splitting schemes for the Benjamin-Bona-Mahony equation with dispersive parameter

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We propose a new class of uniformly accurate splitting methods for the Benjamin–Bona-Mahony equation which converge uniformly in the dispersive parameter \(\varepsilon \). The proposed splitting schemes are furthermore asymptotic convergent and preserve the KdV limit. We carry out a rigorous convergence analysis of the splitting schemes exploiting the smoothing properties in the system. This will allow us to establish improved error bounds with gain either in regularity (for non smooth solutions) or in the dispersive parameter \(\varepsilon \). The latter will be interesting in regimes of a small dispersive parameter. We will in particular show that in the classical BBM case \(P(\partial _x) = \partial _x\) our Lie splitting does not require any spatial regularity, i.e, first order time convergence holds in \(H^{r}\) for solutions in \(H^{r}\) without any loss of derivative. This estimate holds uniformly in \(\varepsilon \). In regularizing regimes \(\varepsilon =\mathscr {O}(1) \) we even gain a derivative with our time discretisation at the cost of loosing in terms of \(\frac{1}{\varepsilon }\). Numerical experiments underline our theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Avilez-Valente, P., Seabra-Santos, F.J.: A high-order Petrov-Galerkin finite element method for the classical Boussinesq wave model. Int. J. Numer. Meth. Fluids 59, 969–1010 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avrin, J.: The generalized Benjamin-Bona-Mahony equation in Rn with singular initial data. Nonlinear Anal.: Theory, Methods Appl. 11, 139–147 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avrin, J., Goldstein, J.A.: Global existence for the Benjamin-Bona-Mahony equation in arbitrary dimensions. Nonlinear Anal.: Theory, Methods Appl. 9, 861–865 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Feng, Y., Su, C.: Uniform error bounds of a time-splitting spectral method for the long-time dynamics of the nonlinear Klein-Gordon equation with weak nonlinearity, preprint arXiv:2001.10868

  5. Baumstark, S., Faou, E., Schratz, K.: Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting. Math. Comp. 87, 1227–1254 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Besse, C., Mésognon-Gireau, B., Noble, P.: Artificial boundary conditions for the linearized Benjamin-Bona-Mahony equation. Numer. Math. 139, 281–314 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanes, S., Casas, F.: On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Numer. Math. 54, 23–37 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blanes, S., Moan, P.C.: Splitting methods for the time-dependent Schrödinger equation. Phys. Lett. A 265, 35–42 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Castella, F., Chartier, P., Descombes, S., Vilmart, G.: Splitting methods with complex times for parabolic equations. BIT Numer. Math. 49, 487–508 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Descombes, S., Thalhammer, M.: An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT Numer. Math. 50, 729–749 (2010)

    Article  MATH  Google Scholar 

  11. Dutykh, D., Katsaounis, T., Mitsotakis, D.: Finite volume methods for unidirectional dispersive wave models. Int. J. Numer. Meth. Fluids 71, 717–736 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fetecau, R., Levy, D.: Approximate model equations for water waves. Commun. Math. Sci. 3, 159–170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gücüyenen, N.: Strang splitting method to Benjamin-Bona-Mahony type equations: analysis and application. J. Comput. Appl. Math. 318, 616–623 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  15. Hansen, E., Ostermann, A.: High order splitting methods for analytic semigroups exist. BIT Numer. Math. 49, 527–542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Holden, H., Karlsen, K., Risebro, N., Tao, T.: Operator splitting for the KdV equation. Math. Comp. 80, 821–846 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holden, H., Lubich, C., Risebro, N.: Operator splitting for partial differential equations with Burgers nonlinerity. Math. Comp. 82, 173–185 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. McLachlan, R.I.: Composition methods in the presence of small parameters. BIT Numer. Math. 35, 258–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ostermann, A., Rousset, F., Schratz, K.: Fourier integrator for periodic NLS: low regularity estimates via discrete Bourgain spaces, arXiv:2006.12785, to appear in J. Eur. Math. Soc. (JEMS)

  21. Ostermann, A., Rousset F., Schratz, K.: Error estimates of a Fourier integrator for the cubic Schrödinger equation at low regularity, arXiv:2012.14146, to appear in Math. Comp

  22. Rousset, F., Schratz, K.: A general framework of low regularity integrators. SIAM J. Numer. Anal. 59, 1735–1768 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rousset, F., Schratz, K.: Convergence error estimates at low regularity for time discretizations of KdV, preprint arXiv:2102.11125

  24. Ruth, R.D.: A canonical integration technique. IEEE Trans. Nucl. Sci. 30, 2669–2671 (1983)

    Article  Google Scholar 

  25. Stanislavova, M.: On the global attractor for the damped Benjamin-Bona-Mahony equation, Conference Publications, Special 824–832 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cabrera Calvo.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 850941)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera Calvo, M., Schratz, K. Uniformly accurate splitting schemes for the Benjamin-Bona-Mahony equation with dispersive parameter. Bit Numer Math 62, 1625–1647 (2022). https://doi.org/10.1007/s10543-022-00925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-022-00925-z

Keywords

Mathematics Subject Classification

Navigation