Skip to main content
Log in

Homogeneous multigrid for embedded discontinuous Galerkin methods

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We formulate a multigrid method for an embedded discontinuous Galerkin (EDG) discretization scheme for Poisson’s equation. This multigrid method is homogeneous in the sense that it uses the same discretization scheme on all levels. In particular, we use the injection operator developed in Lu et al. (IMA J Numer Anal, 2021) for HDG and show optimal convergence rates under the assumption of elliptic regularity. Our analytical findings are underlined by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Byfut, A., Gedicke, J., Günther, D., Reininghaus, J., Wiedemann, S.: FFW documentation. https://github.com/project-openffw/openffw

  2. Bramble, J.H., Pasciak, J.E.: The analysis of smoothers for multigrid algorithms. Math. Comput. 58(198), 467–488 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bramble, J.H., Pasciak, J.E., Xu, J.: The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms. Math. Comput. 56(193), 1–34 (1991)

    Article  MathSciNet  Google Scholar 

  4. Bramble, J.H.: Multigrid Methods. Chapman and Hall/CRC, Boca Raton (1993). (republished online 2019)

  5. Cockburn, B., Dubois, O., Gopalakrishnan, J., Tan, S.: Multigrid for an HDG method. IMA J. Numer. Anal. 34(4), 1386–1425 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chen, G., Fu, G., Singler, J.R., Zhang, Y.: A class of embedded DG methods for Dirichlet boundary control of convection diffusion PDEs. J. Sci. Comput. 81, 1–26 (2019)

    Article  MathSciNet  Google Scholar 

  7. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cockburn, B., Guzmán, J., Soon, S.C., Stolarski, H.K.: An analysis of the embedded discontinuous Galerkin method for second-order elliptic problems. SIAM J. Numer. Anal. 47(4), 2686–2707 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chen, H., Lu, P., Xu, X.: A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Comput. Phys. 264, 133–151 (2014)

    Article  MathSciNet  Google Scholar 

  10. Duan, H.Y., Gao, S.Q., Tan, R.C.E., Zhang, S.: A generalized BPX multigrid framework covering nonnested V-cycle methods. Math. Comput. 76(257), 137–152 (2007)

    Article  MathSciNet  Google Scholar 

  11. Di Pietro, D.A., Hülsemann, F., Matalon, P., Mycek, P., Rüde, U., Ruiz, D.: An h-multigrid method for hybrid high-order discretizations. SIAM J. Sci. Comput. 43(5), S839–S861 (2021)

    Article  MathSciNet  Google Scholar 

  12. Fabien, M.S., Knepley, M.G., Mills, R.T., Rivière, B.M.: Manycore parallel computing for a hybridizable discontinuous Galerkin nested multigrid method. SIAM J. Sci. Comput. 41(2), C73–C96 (2019)

    Article  MathSciNet  Google Scholar 

  13. Fu, G., Shu, C.W.: Analysis of an embedded discontinuous Galerkin method with implicit-explicit time-marching for convection–diffusion problems. Int. J. Numer. Anal. Model. 14(4), 477–499 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin, Heidelberg (1986)

    Book  Google Scholar 

  15. Gopalakrishnan, J., Tan, S.: A convergent multigrid cycle for the hybridized mixed method. Numer. Linear Algebra Appl. 16, 689–714 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kamenetskiy, D.S.: On the relation of the embedded discontinuous Galerkin method to the stabilized residual-based finite element methods. Appl. Numer. Math. 108, 271–285 (2016)

    Article  MathSciNet  Google Scholar 

  17. Kronbichler, M., Wall, W.A.: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. SIAM J. Sci. Comput. 40(5), A3423–A3448 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lu, P., Rupp, A., Kanschat, G.: Analysis of injection operators in multigrid solvers for hybridized discontinuous Galerkin methods (2021). Publishesd online on arXiv: 2104.00118. https://doi.org/10.1093/imanum/drab055

  19. Lu, P., Rupp, A., Kanschat, G.: Homogeneous multigrid for HDG. IMA J. Numer. Anal. (2021)

  20. Nguyen, N.C., Peraire, J., Cockburn, B.: A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J. Comput. Phys. 302, 674–692 (2015)

    Article  MathSciNet  Google Scholar 

  21. Peraire, J., Nguyen, N.C., Cockburn, B.: An embedded discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations. In: 20th AIAA Computational Fluid Dynamics Conference, p. 3228 (2011)

  22. Rhebergen, S., Wells, G.N.: An embedded-hybridized discontinuous Galerkin finite element method for the Stokes equations. Comput. Methods Appl. Mech. Eng. 358, 112619 (2020)

    Article  MathSciNet  Google Scholar 

  23. Tan, S.: Iterative solvers for hybridized finite element methods. Ph.D. Thesis, University of Florida (2009)

  24. Zhang, X., Zhang, Y., Singler, J.R.: An EDG method for distributed optimal control of elliptic PDEs (2018). ArXiv preprint arXiv:1801.02978

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peipei Lu.

Additional information

Communicated by Daniel Kressner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. Lu has been supported by the Alexander von Humboldt Foundation. This work is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2181/1-390900948 (the Heidelberg STRUCTURES Excellence Cluster)

Appendix A. Used results

Appendix A. Used results

Here, we summarize the results from other sources that we used in the proofs of our propositions.

Lemma A.1

Let \(\mu \) be any function in \({{\tilde{M}}}_\ell \). The following statement holds:

$$\begin{aligned} \vert \! \vert \! \vert \sqrt{\tau _\ell } ({\mathcal {U}}_\ell \mu - \mu ) \vert \! \vert \! \vert _\ell \lesssim \sqrt{ h_\ell \tau _\ell } \Vert \varvec{{\mathcal {Q}}}_\ell \mu \Vert _0. \end{aligned}$$
(A.1)

Thus, if \(\tau _\ell h_\ell \lesssim 1\),

$$\begin{aligned} \Vert {\mathcal {U}}_\ell \mu - \mu \Vert _\ell \lesssim h_\ell \Vert \varvec{{\mathcal {Q}}}_\ell \mu \Vert _0. \end{aligned}$$
(A.2)

Proof

The first inequality is [5, Lemma 3.4 (iv)] whose right hand side is estimated using [5, Lemma 3.4 (v)]. The second inequality follows after multiplication with \(h_\ell \) and exploiting the definitions of \(\vert \! \vert \! \vert \cdot \vert \! \vert \! \vert _\ell \) and \(\Vert \cdot \Vert _\ell \). \(\square \)

Lemma A.2

If \(\tau _\ell h_\ell \lesssim 1\), the local solution operators obeys

$$\begin{aligned} \Vert {\mathcal {U}}_\ell \mu \Vert _0 \lesssim \Vert \mu \Vert _\ell \end{aligned}$$
(A.3)

Proof

This is Theorem 3.1 in [5], where we use that the constant becomes independent of \(h_\ell \) if \(\tau _\ell h_\ell \lesssim 1\). \(\square \)

Lemma A.3

(Lemma 4.3 in [19]) The DG reconstructions of the injection operator admits the estimate

$$\begin{aligned} \Vert {\mathcal {U}}_{\ell -1} \mu - {\mathcal {U}}_\ell I_\ell \mu \Vert _0 \lesssim h_\ell \Vert \mu \Vert _{a_{\ell -1}}, \qquad \forall \mu \in {{\tilde{M}}}_{\ell -1}. \end{aligned}$$
(A.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Rupp, A. & Kanschat, G. Homogeneous multigrid for embedded discontinuous Galerkin methods. Bit Numer Math 62, 1029–1048 (2022). https://doi.org/10.1007/s10543-021-00902-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-021-00902-y

Keywords

Mathematics Subject Classification

Navigation