Skip to main content
Log in

Runge–Kutta Lawson schemes for stochastic differential equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a framework to construct general stochastic Runge–Kutta Lawson schemes. We prove that the schemes inherit the consistency and convergence properties of the underlying Runge–Kutta scheme, and confirm this in some numerical experiments. We also investigate the stability properties of the methods and show for some examples, that the new schemes have improved stability properties compared to the underlying schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The vectorization of a \(d\times d\) matrix \(A=\{a_{i,j}\}_{i,j=1}^d\) is the \(d^2\)-dimensional vector given by \(\text {vec}(A)=(a_{1,1},a_{2,1},\dots ,a_{d,d-1},a_{d,d})^\top \).

References

  1. Arara, A.A., Debrabant, K., Kværnø, A.: Stochastic B-series and order conditions for exponential integrators. In: Numerical Mathematics and Advanced Applications, Lecture Notes in Computational Science and Engineering, pp. 419–427. Springer (2019). https://doi.org/10.1007/978-3-319-96415-7_37

  2. Arnold, L.: Stochastic differential equations: theory and applications. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney (1974). Translated from the German

  3. Biscay, R., Jimenez, J.C., Riera, J.J., Valdes, P.A.: Local linearization method for the numerical solution of stochastic differential equations. Ann. Inst. Statist. Math. 48(4), 631–644 (1996). https://doi.org/10.1007/BF00052324

    Article  MathSciNet  MATH  Google Scholar 

  4. Buckwar, E., Kelly, C.: Towards a systematic linear stability analysis of numerical methods for systems of stochastic differential equations. SIAM J. Numer. Anal. 48(1), 298–321 (2010). https://doi.org/10.1137/090771843

    Article  MathSciNet  MATH  Google Scholar 

  5. Buckwar, E., Kelly, C.: Non-normal drift structures and linear stability analysis of numerical methods for systems of stochastic differential equations. Comput. Math. Appl. 64(7), 2282–2293 (2012). https://doi.org/10.1016/j.camwa.2012.02.059

    Article  MathSciNet  MATH  Google Scholar 

  6. Buckwar, E., Sickenberger, T.: A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods. Math. Comput. Simul. 81(6), 1110–1127 (2011). https://doi.org/10.1016/j.matcom.2010.09.015

    Article  MathSciNet  MATH  Google Scholar 

  7. Buckwar, E., Sickenberger, T.: A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems. Appl. Numer. Math. 62(7), 842–859 (2012). https://doi.org/10.1016/j.apnum.2012.03.002

    Article  MathSciNet  MATH  Google Scholar 

  8. Burrage, K., Burrage, P.M.: High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations. Appl. Numer. Math. 22(1–3), 81–101 (1996). https://doi.org/10.1016/S0168-9274(96)00027-X. (Special issue celebrating the centenary of Runge-Kutta methods)

  9. Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge-Kutta methods by \(B\)-series. SIAM J. Numer. Anal. 38(5), 1626–1646 (2000). https://doi.org/10.1137/S0036142999363206

    Article  MathSciNet  MATH  Google Scholar 

  10. Carbonell, F., Jimenez, J.C.: Weak local linear discretizations for stochastic differential equations with jumps. J. Appl. Probab. 45(1), 201–210 (2008). https://doi.org/10.1239/jap/1208358962

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, D.: On the numerical discretisation of stochastic oscillators. Math. Comput. Simul. 82(8), 1478–1495 (2012). https://doi.org/10.1016/j.matcom.2012.02.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Debrabant, K., Kværnø, A.: B-series analysis of stochastic Runge-Kutta methods that use an iterative scheme to compute their internal stage values. SIAM J. Numer. Anal. 47(1), 181–203 (2008/09). https://doi.org/10.1137/070704307

  13. Debrabant, K., Kværnø, A., Mattsson, N.C.: Lawson schemes for highly oscillatory stochastic differential equations and conservation of invariants. Preprint (2019). arXiv:1909.12287

  14. Debrabant, K., Kværnø, A., Mattsson, N.C.: Matlab code: Runge-Kutta Lawson schemes for stochastic differential equations (2020). https://doi.org/10.5281/zenodo.4062482

  15. Erdoğan, U., Lord, G.J.: A new class of exponential integrators for SDEs with multiplicative noise. IMA J. Numer. Anal. 39(2), 820–846 (2019). https://doi.org/10.1093/imanum/dry008

    Article  MathSciNet  MATH  Google Scholar 

  16. Higham, D.J.: Mean-square and asymptotic stability of the stochastic theta method. SIAM J. Numer. Anal. 38(3), 753–769 (2000). https://doi.org/10.1137/S003614299834736X

  17. Jimenez, J.C., Shoji, I., Ozaki, T.: Simulation of stochastic differential equations through the local linearization method. A comparative study. J. Stat. Phys. 94(3–4), 587–602 (1999). https://doi.org/10.1023/A:1004504506041

    Article  MathSciNet  MATH  Google Scholar 

  18. Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. In: Applications of Mathematics, vol. 23, 2nd edn. Springer-Verlag, Berlin (1999). https://doi.org/10.1007/978-3-662-12616-5

  19. Komori, Y., Burrage, K.: A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems. BIT 54(4), 1067–1085 (2014). https://doi.org/10.1007/s10543-014-0485-1

    Article  MathSciNet  MATH  Google Scholar 

  20. Komori, Y., Cohen, D., Burrage, K.: Weak second order explicit exponential Runge–Kutta methods for stochastic differential equations. SIAM J. Sci. Comput. 39(6), A2857–A2878 (2017). https://doi.org/10.1137/15M1041341

    Article  MathSciNet  MATH  Google Scholar 

  21. Komori, Y., Mitsui, T., Sugiura, H.: Rooted tree analysis of the order conditions of ROW-type scheme for stochastic differential equations. BIT 37(1), 43–66 (1997). https://doi.org/10.1007/BF02510172

    Article  MathSciNet  MATH  Google Scholar 

  22. Lawson, J.D.: Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4, 372–380 (1967). https://doi.org/10.1137/0704033

    Article  MathSciNet  MATH  Google Scholar 

  23. Milstein, G.N.: Numerical integration of stochastic differential equations, Mathematics and its Applications, vol. 313. Kluwer Academic Publishers Group, Dordrecht (1995). Translated and revised from the 1988 Russian original https://doi.org/10.1007/978-94-015-8455-5

  24. Milstein, G.N., Repin, Y.M., Tretyakov, M.V.: Numerical methods for stochastic systems preserving symplectic structure. SIAM J. Numer. Anal. 40(4), 1583–1604 (2002). https://doi.org/10.1137/S0036142901395588

    Article  MathSciNet  MATH  Google Scholar 

  25. Rößler, A.: Rooted tree analysis for order conditions of stochastic Runge–Kutta methods for the weak approximation of stochastic differential equations. Stoch. Anal. Appl. 24(1), 97–134 (2006). https://doi.org/10.1080/07362990500397699

    Article  MathSciNet  MATH  Google Scholar 

  26. Rößler, A.: Second order Runge–Kutta methods for Stratonovich stochastic differential equations. BIT 47(3), 657–680 (2007). https://doi.org/10.1007/s10543-007-0130-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Rößler, A.: Second order Runge–Kutta methods for Itô stochastic differential equations. SIAM J. Numer. Anal. 47(3), 1713–1738 (2009). https://doi.org/10.1137/060673308

  28. Rößler, A.: Strong and weak approximation methods for stochastic differential equations—some recent developments. In: Recent developments in applied probability and statistics, pp. 127–153. Physica, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2598-5_6

  29. Saito, Y., Mitsui, T.: Stability analysis of numerical schemes for stochastic differential equations. SIAM J. Numer. Anal. 33(6), 2254–2267 (1996). https://doi.org/10.1137/S0036142992228409

    Article  MathSciNet  MATH  Google Scholar 

  30. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997). https://doi.org/10.1137/S1064827594276424. Dedicated to C. William Gear on the occasion of his 60th birthday

Download references

Acknowledgements

Nicky Cordua Mattsson would like to thank the SDU e-Science centre for partially funding his PhD and the Department of Mathematics at the Norwegian University of Science and Technology for kindly hosting him during his visit. The authors would like to thank two anonymous reviewers for very detailed reading and the resulting many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Debrabant.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Platen strong order 1.5 SL scheme

Writing the explicit order 1.5 strong scheme by Platen for \(M=1\) [18, Eq. 11.2.1] in the form (2.9), we see that the coefficients \(z_i^{m,n}\) of the scheme are given by

 

\(m=0\)

\(m=1\)

\(i=1\)

\(z^{0,n}_1 = \frac{1}{2}h\)

\(z^{1,n}_1 = \Delta W^n - \frac{1}{h}[\Delta W^n h-\Delta Z^n]\)

\(i=2\)

\(z^{0,n}_2 = \frac{1}{2\sqrt{h}}\Delta Z^n + \frac{1}{4}h\)

\(z^{1,n}_2 = \frac{1}{h}\left[ \frac{1}{2}\Delta W^n h-\Delta Z^n - \frac{1}{4} \{\frac{1}{3}(\Delta W^n)^2 - h\}\Delta W^n\right] \)

\(i=3\)

\(z^{0,n}_3 =-\frac{1}{2\sqrt{h}}\Delta Z^n + \frac{1}{4}h\)

\(z^{1,n}_3 = \frac{1}{h}\left[ \frac{1}{2}\Delta W^n h-\Delta Z^n + \frac{1}{4} \{\frac{1}{3}(\Delta W^n)^2 - h\}\Delta W^n\right] \)

\(i=4\)

\(z^{0,n}_4 = 0\)

\(z^{1,n}_4 = \frac{1}{4h} \left[ \frac{1}{3}(\Delta W^n)^2 - h\right] \Delta W^n\)

\(i=5\)

\(z^{0,n}_5 = 0\)

\(z^{1,n}_4 = -\frac{1}{4h} \left[ \frac{1}{3}(\Delta W^n)^2 - h\right] \Delta W^n\)

where

$$\begin{aligned} \Delta Z^n=\frac{1}{2}h\Delta W^n + \frac{\sqrt{3}}{6}h^{3/2}U^n \end{aligned}$$

with \(U ^n\sim \mathcal {N}(0,1)\). Similarly, the coefficients of \(Z_{ij}^{m,n}\) are given by

 

\(j=1\)

\(j=2\)

\(j=3\)

\(j=4\)

\(j=5\)

\(i=1\)

     

\(m=0\)

\(Z^{0,n}_{1,1} = 0\),

\(Z^{0,n}_{1,2} = 0\),

\(Z^{0,n}_{1,3} = 0\),

\(Z^{0,n}_{1,4} = 0\),

\(Z^{0,n}_{1,5} = 0\)

\(m=1\)

\(Z^{1,n}_{1,1} = 0\),

\(Z^{1,n}_{1,2} = 0\),

\(Z^{1,n}_{1,3} = 0\),

\(Z^{1,n}_{1,4} = 0\),

\(Z^{1,n}_{1,5} = 0\)

\(i=2\)

     

\(m=0\)

\(Z^{0,n}_{2,1} = h\),

\(Z^{0,n}_{2,2} = 0\),

\(Z^{0,n}_{2,3} = 0\),

\(Z^{0,n}_{2,4} = 0\),

\(Z^{0,n}_{2,5} = 0\)

\(m=1\)

\(Z^{1,n}_{2,1} = \sqrt{h}\),

\(Z^{1,n}_{2,2} = 0\),

\(Z^{1,n}_{2,3} = 0\),

\(Z^{1,n}_{2,4} = 0\),

\(Z^{1,n}_{2,5} = 0\)

\(i=3\)

     

\(m=0\)

\(Z^{0,n}_{1,1} = h\),

\(Z^{0,n}_{1,2} = 0\),

\(Z^{0,n}_{1,3} = 0\),

\(Z^{0,n}_{1,4} = 0\),

\(Z^{0,n}_{1,5} = 0\)

\(m=1\)

\(Z^{1,n}_{1,1} = -\sqrt{h}\),

\(Z^{1,n}_{1,2} = 0\),

\(Z^{1,n}_{1,3} = 0\),

\(Z^{1,n}_{1,4} = 0\),

\(Z^{1,n}_{1,5} = 0\)

\(i=4\)

     

\(m=0\)

\(Z^{0,n}_{2,1} = h\),

\(Z^{0,n}_{2,2} = 0\),

\(Z^{0,n}_{2,3} = 0\),

\(Z^{0,n}_{2,4} = 0\),

\(Z^{0,n}_{2,5} = 0\)

\(m=1\)

\(Z^{1,n}_{2,1} = \sqrt{h}\),

\(Z^{1,n}_{2,2} = \sqrt{h}\),

\(Z^{1,n}_{2,3} = 0\),

\(Z^{1,n}_{2,4} = 0\),

\(Z^{1,n}_{2,5} = 0\)

\(i=5\)

     

\(m=0\)

\(Z^{0,n}_{2,1} = h\),

\(Z^{0,n}_{2,2} = 0\),

\(Z^{0,n}_{2,3} = 0\),

\(Z^{0,n}_{2,4} = 0\),

\(Z^{0,n}_{2,5} = 0\)

\(m=1\)

\(Z^{1,n}_{2,1} = \sqrt{h}\),

\(Z^{1,n}_{2,2} = -\sqrt{h}\),

\(Z^{1,n}_{2,3} = 0\),

\(Z^{1,n}_{2,4} = 0\),

\(Z^{1,n}_{2,5} = 0\)

Using the definitions of the coefficients \(c_{m}^{n,i}\) and \(\Delta L_{i}^n\) we calculate

 

\(m=0\)

\(m=1\)

 

\(\Delta L_i^n\)

\(i=1\)

\(c^{n,1}_0=0\)

\(c^{n,1}_1=0\)

\(\implies \)

\(\Delta L_1^n = 0\)

\(i=2\)

\(c^{n,2}_0=h\)

\(c^{n,2}_1=\sqrt{h}\)

\(\implies \)

\(\Delta L_2^n = (A_0 -\gamma ^\star A_1^2)h + A_1 \sqrt{h}\)

\(i=3\)

\(c^{n,3}_0=h\)

\(c^{n,3}_1=-\sqrt{h}\)

\(\implies \)

\(\Delta L_3^n = (A_0 -\gamma ^\star A_1^2)h - A_1 \sqrt{h}\)

\(i=4\)

\(c^{n,4}_0=h\)

\(c^{n,4}_1=2\sqrt{h}\)

\(\implies \)

\(\Delta L_4^n = (A_0 -\gamma ^\star A_1^2)h + 2A_1 \sqrt{h}\)

\(i=5\)

\(c^{n,5}_0=h\)

\(c^{n,5}_1=0\)

\(\implies \)

\(\Delta L_5^n = (A_0 -\gamma ^\star A_1^2)h\)

Finally, using the definitions of \(c_{m}^{n}\) and \(\Delta L^n\) we calculate \(c^{n}_0=h\), \(c^{n}_1=\Delta W^n\) and thus \(\Delta L^n = (A_0 -\gamma ^\star A_1^2)h + A_1\Delta W^n\).

With all the parameters of the scheme (2.12) in place, the resulting Platen strong order 1.5 SL scheme is given by

$$\begin{aligned} H_1= & {} {\bar{V}}^n_n, \\ H_2= & {} {\bar{V}}^n_n + \tilde{g}^n_0 (t_n,H_1) h + \tilde{g}^n_1 (t_n,H_1) \sqrt{h}, \\ H_3= & {} {\bar{V}}^n_n + \tilde{g}^n_0 (t_n,H_1) h - \tilde{g}^n_1 (t_n,H_1) \sqrt{h}, \\ H_4= & {} {\bar{V}}^n_n + \tilde{g}^n_0 (t_n,H_1) h + \tilde{g}^n_1 (t_n,H_1) \sqrt{h} + e^{-\Delta L_2^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_2^n}H_2) \sqrt{h}, \\ H_5= & {} {\bar{V}}^n_n + \tilde{g}^n_0 (t_n,H_1) h + \tilde{g}^n_1 (t_n,H_1) \sqrt{h} - e^{-\Delta L_2^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_2^n}H_2) \sqrt{h},\\ {\bar{V}}^n_{n+1}= & {} {\bar{V}}^n_n + \tilde{g}^n_1 (t_n,H_1) \Delta W^n\\&+ \Big [e^{-\Delta L_2^n}\tilde{g}^n_0 (t_n+h,e^{\Delta L_2^n}H_2) - e^{-\Delta L_3^n}\tilde{g}^n_0 (t_n+h,e^{\Delta L_3^n}H_3)\Big ]\frac{\Delta Z^n}{2\sqrt{h}} \\&+ \Big [e^{-\Delta L_2^n}\tilde{g}^n_0 (t_n+h,e^{\Delta L_2^n}H_2) + 2\tilde{g}^n_0 (t_n,H_1) + e^{-\Delta L_3^n}\tilde{g}^n_0 (t_n+h,e^{\Delta L_3^n}H_3)\Big ]\frac{h}{4} \\&+ \Big [e^{-\Delta L_2^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_2^n}H_2) - e^{-\Delta L_3^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_3^n}H_3)\Big ]\frac{(\Delta W^n)^2 - h}{4\sqrt{h}} \\&+ \Big [e^{-\Delta L_2^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_2^n}H_2) - 2\tilde{g}^n_1 (t_n,H_1) + e^{-\Delta L_3^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_3^n}H_3)\Big ]\frac{\Delta W^n h - \Delta Z^n}{2h}\\&+\Big [e^{-\Delta L_4^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_4^n}H_4) - e^{-\Delta L_5^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_5^n}H_5) - e^{-\Delta L_2^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_2^n}H_2) \\&+ e^{-\Delta L_3^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_3^n}H_3)\Big ] \frac{1}{4h}\left[ \frac{1}{3}(\Delta W^n)^2 - h \right] \Delta W^n \end{aligned}$$

and

$$\begin{aligned} Y_{n+1} = e^{\Delta L^n} {\bar{V}}^n_{n+1}. \end{aligned}$$

1.2 Platen weak order 2.0 SL scheme

Following the same steps as above, for the explicit order 2 weak scheme by Platen for \(M=1\) [18, Eq. 15.1.1] as underlying scheme we obtain

$$\begin{aligned} \Delta L_1^n= & {} 0 \\ \Delta L_2^n= & {} (A_0 - \frac{1}{2} A_1^2) h + A_1 \Delta W^n \\ \Delta L_3^n= & {} (A_0 - \frac{1}{2} A_1^2) h + A_1 \sqrt{h} \\ \Delta L_4^n= & {} (A_0 - \frac{1}{2} A_1^2) h - A_1 \sqrt{h} \\ \Delta L^n= & {} (A_0 - \frac{1}{2} A_1^2) h + A_1 \Delta W^n \end{aligned}$$

and thus the corresponding Platen weak order 2.0 SL scheme is given by

$$\begin{aligned} H_1&= {\bar{V}}^n_n, \\ H_2&= {\bar{V}}^n_n + \tilde{g}^n_0 (t_n,H_1) h + \tilde{g}^n_1 (t_n,H_1) \Delta W^n, \\ H_3&= {\bar{V}}^n_n + \tilde{g}^n_0 (t_n,H_1) h + \tilde{g}^n_1 (t_n,H_1) \sqrt{h}, \\ H_4&= {\bar{V}}^n_n + \tilde{g}^n_0 (t_n,H_1) h - \tilde{g}^n_1 (t_n,H_1) \sqrt{h}, \\ \\ {\bar{V}}^n_{n+1}&= {\bar{V}}^n_n + \Big [e^{-\Delta L_2^n}\tilde{g}^n_0 (t_n+h,e^{\Delta L_2^n}H_2) + \tilde{g}^n_0 (t_n,H_1)\Big ] \frac{h}{2}\\&+ \Big [e^{-\Delta L_3^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_3^n}H_3) + 2\tilde{g}^n_1 (t_n,H_1) + e^{-\Delta L_4^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_4^n}H_4)\Big ] \frac{\Delta W^n}{4} \\&+ \Big [e^{-\Delta L_3^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_3^n}H_3) - e^{-\Delta L_4^n}\tilde{g}^n_1 (t_n+h,e^{\Delta L_4^n}H_4)\Big ]\frac{(\Delta W^n)^2 - h}{4\sqrt{h}} \\&Y_{n+1} = e^{\Delta L^n} {\bar{V}}^n_{n+1}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debrabant, K., Kværnø, A. & Mattsson, N.C. Runge–Kutta Lawson schemes for stochastic differential equations. Bit Numer Math 61, 381–409 (2021). https://doi.org/10.1007/s10543-020-00839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-020-00839-8

Keywords

Mathematics Subject Classification

Navigation