Skip to main content
Log in

A multigrid method for the ground state solution of Bose–Einstein condensates based on Newton iteration

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a new kind of multigrid method is proposed for the ground state solution of Bose–Einstein condensates based on Newton iteration scheme. Instead of treating eigenvalue \(\lambda \) and eigenvector u separately, we regard the eigenpair \((\lambda , u)\) as one element in the composite space \({\mathbb {R}} \times H_0^1(\varOmega )\) and then Newton iteration step is adopted for the nonlinear problem. Thus in this multigrid scheme, the main computation is to solve a linear discrete boundary value problem in every refined space, which can improve the overall efficiency for the simulation of Bose–Einstein condensations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Adhikari, S.: Collapse of attractive Bose–Einstein condensed vortex states in a cylindrical trap. Phys. Rev. E 65, 016703 (2002)

    Article  Google Scholar 

  3. Adhikari, S., Muruganandam, P.: Bose–Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation. J. Phys. B 35, 2831–2843 (2002)

    Article  Google Scholar 

  4. Anderson, M., Ensher, J., Mattews, M., Wieman, C., Cornell, E.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269(5221), 198–201 (1995)

    Article  Google Scholar 

  5. Anglin, J., Ketterle, W.: Bose–Einstein condensation of atomic gases. Nature 416, 211–218 (2002)

    Article  Google Scholar 

  6. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  7. Brezzi, F., Fortin, F.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  Google Scholar 

  8. Bramble, J., Pasciak, J.: New convergence estimates for multigrid algorithms. Math. Comput. 49, 311–329 (1987)

    Article  MathSciNet  Google Scholar 

  9. Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  Google Scholar 

  10. Bose, S.: Plancks Gesetz und Lichtquantenhypothese. Zeits. Phys. 3, 178–181 (1924)

    Article  Google Scholar 

  11. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6(1), 1–135 (2013)

    Article  MathSciNet  Google Scholar 

  12. Bao, W., Du, Q.: Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25(5), 1674–1697 (2004)

    Article  MathSciNet  Google Scholar 

  13. Bao, W., Tang, W.: Ground-state solution of trapped interacting Bose–Einstein condensate by directly minimizing the energy functional. J. Comput. Phys. 187, 230–254 (2003)

    Article  MathSciNet  Google Scholar 

  14. Brandt, A., Yavneh, I.: On multigrid solution of high-Reynolds incompressible entering flows. J. Comput. Phys 101(1), 151–164 (1992)

    Article  MathSciNet  Google Scholar 

  15. Cerimele, M., Chiofalo, M., Pistella, F., Succi, S., Tosi, M.: Numerical solution of the Gross-Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose-Einstein condensates. Phys. Rev. E 62(1), 1382–1389 (2000)

    Article  Google Scholar 

  16. Chiofalo, M., Succi, S., Tosi, M.: Ground state of trapped interacting Bose–Einstein condensates by an explicit imaginary-time algorithm. Phys. Rev. E 62(5), 7438–7444 (2000)

    Article  Google Scholar 

  17. Cornell, E., Wieman, C.: Nobel lecture: Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys. 74, 875–893 (2002)

    Article  Google Scholar 

  18. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45(1–3), 90–117 (2010)

    Article  MathSciNet  Google Scholar 

  19. Ciarlet, P.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  20. Dalfovo, F., Giorgini, S., Pitaevskii, L., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71(3), 463–512 (1998)

    Article  Google Scholar 

  21. Davis, K., Mewes, M., Andrews, M., Druten, N., Durfee, D., Kurn, D., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75(22), 3969–3973 (1995)

    Article  Google Scholar 

  22. Einstein, A.: Quantentheorie des einatomigen idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften 22, 261–267 (1924)

    MATH  Google Scholar 

  23. Einstein, A.: Quantentheorie des einatomigen idealen Gases, zweite Abhandlung. Sitzungsberichte der Preussischen Akademie der Wissenschaften 1, 3–14 (1925)

    MATH  Google Scholar 

  24. Gross, E.: Structure of a quantized vortex in boson systems. IL Nuovo Cimento 20(3), 454–477 (1961)

    Article  MathSciNet  Google Scholar 

  25. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)

    Book  Google Scholar 

  26. Ketterle, W.: Nobel lecture: when atoms behave as waves: Bose–Einstein condensation and the atom laser. Rev. Mod. Phys. 74, 1131–1151 (2002)

    Article  Google Scholar 

  27. Pitaevskii, L.: Vortex lines in an imperfect Bose gas. Soviet Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  28. Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  29. Shaidurov, V.V.: Multigrid Methods for Finite Elements. Kluwer Academic Publishers, Dordrecht (1995)

    Book  Google Scholar 

  30. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  Google Scholar 

  31. Zhang, S.: Optimal-order nonnested multigrid methods for solving finite element equations. I. On quasi-uniform meshes. Math. Comp 55, 23–36 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Zhou, A.: An analysis of finite-dimensional approximations for the ground state solution of Bose–Einstein condensates. Nonlinearity 17, 541–550 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiling Yue.

Additional information

Communicated by Marko Huhtanen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported in part by the National Key Research and Development Program of China (2019YFA0709601), National Natural Science Foundations of China (NSFC 11771434, 11801021, 91730302, 91630201), the National Center for Mathematics and Interdisciplinary Science, CAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Xie, H., Xie, M. et al. A multigrid method for the ground state solution of Bose–Einstein condensates based on Newton iteration. Bit Numer Math 61, 645–663 (2021). https://doi.org/10.1007/s10543-020-00830-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-020-00830-3

Keywords

Mathematics Subject Classification

Navigation