Skip to main content
Log in

Backward error analysis of polynomial approximations for computing the action of the matrix exponential

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We describe how to perform the backward error analysis for the approximation of \(\exp (A)v\) by \(p(s^{-1}A)^sv\), for any given polynomial p(x). The result of this analysis is an optimal choice of the scaling parameter s which assures a bound on the backward error, i.e. the equivalence of the approximation with the exponential of a slightly perturbed matrix. Thanks to the SageMath package expbea we have developed, one can optimize the performance of the given polynomial approximation. On the other hand, we employ the package for the analysis of polynomials interpolating the exponential function at so called Leja–Hermite points. The resulting method for the action of the matrix exponential can be considered an extension of both Taylor series approximation and Leja point interpolation. We illustrate the behavior of the new approximation with several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The excerpts of code reported here do work in SageMath. Furthermore, we feel they are short, easy to understand, and can be regarded as pseudo-codes.

  2. In [7], \(\theta _m\) was selected equal to \(\bar{c}_m\) and therefore the values reported in Table 3 are larger than those in [7, Table 1].

References

  1. Al-Mohy, A.H., Higham, N.J.: A new scaling and squaring algorithm for the matrix exponential. SIAM J. Matrix Anal. Appl. 31(3), 970–989 (2009)

    Article  MathSciNet  Google Scholar 

  2. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential with an application to exponential integrators. SIAM J. Sci. Comput. 33(2), 488–511 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bergamaschi, L., Caliari, M., Vianello, M.: Efficient approximation of the exponential operator for discrete 2D advection–diffusion problems. Numer. Linear Algebra Appl. 10(3), 271–289 (2003)

    Article  MathSciNet  Google Scholar 

  4. Berrut, J.P., Trefethen, N.: Barycentric Lagrange Interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bos, L.P., Caliari, M.: Application of modified Leja sequences to polynomial interpolation. Dolomites Res. Notes Approx. 8, 66–74 (2015)

    Article  MathSciNet  Google Scholar 

  6. Caliari, M.: Accurate evaluation of divided differences for polynomial interpolation of exponential propagators. Computing 80(2), 189–201 (2007)

    Article  MathSciNet  Google Scholar 

  7. Caliari, M., Kandolf, P., Ostermann, A., Rainer, S.: The Leja method revisited: backward error analysis for the matrix exponential. SIAM J. Sci. Comput. 38(3), A1639–A1661 (2016)

    Article  MathSciNet  Google Scholar 

  8. Caliari, M., Ostermann, A., Rainer, S.: Meshfree exponential integrators. SIAM J. Sci. Comput. 35(1), A431–A452 (2013)

    Article  MathSciNet  Google Scholar 

  9. Caliari, M., Vianello, M., Bergamaschi, L.: Interpolating discrete advection–diffusion propagators at Leja sequences. J. Comput. Appl. Math. 172(1), 79–99 (2004)

    Article  MathSciNet  Google Scholar 

  10. Deadman, E.: Estimating the condition number of \(f(A)b\). Numer. Algorithms 70, 287–308 (2015)

    Article  MathSciNet  Google Scholar 

  11. Druskin, V.L., Knizhnerman, L.A.: Two polynomial methods of calculating functions of symmetric matrices. USSR Comput. Math. Math. Phys. 29(6), 112–121 (1989)

    Article  MathSciNet  Google Scholar 

  12. Fischer, T.M.: On the algorithm by Al-Mohy and Higham for computing the action of the matrix exponential: a posteriori roundoff error estimation. Linear Algebra Appl. 531, 141–168 (2017)

    Article  MathSciNet  Google Scholar 

  13. Higham, N.J.: Functions of Matrices. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  14. Higham, N.J., Relton, S.D.: Higher order Fréchet derivatives of matrix functions and the level-2 condition number SIAM. J. Matrix Anal. Appl. 35(3), 1019–1037 (2014)

    Article  MathSciNet  Google Scholar 

  15. Higham, N.J., Tisseur, F.: A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl. 21(4), 1185–1201 (2000)

    Article  MathSciNet  Google Scholar 

  16. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  Google Scholar 

  17. Kalantari, B.: Generalization of Taylor’s theorem and Newton’s method via a new family of determinantal interpolation formulas and its applications. J. Comput. Appl. Math. 126, 287–318 (2000)

    Article  MathSciNet  Google Scholar 

  18. Luan, V.T., Ostermann, A.: Parallel exponential Rosenbrock methods. Comput. Math. Appl. 71, 1137–1150 (2016)

    Article  MathSciNet  Google Scholar 

  19. Martínez, A., Bergamaschi, L., Caliari, M., Vianello, M.: A massively parallel exponential integrator for advection–diffusion models. J. Comput. Appl. Math. 231(1), 82–91 (2009)

    Article  MathSciNet  Google Scholar 

  20. McCurdy, A.: Accurate computation of divided differences. Technical report, University of California—ERL (1980)

  21. McCurdy, A., Ng, K.C., Parlett, B.N.: Accurate computation of divided differences of the exponential function. Math. Comput. 43(168), 501–528 (1984)

    Article  MathSciNet  Google Scholar 

  22. Moret, I., Novati, P.: An interpolatory approximation of the matrix exponential based on Faber polynomials. J. Comput. Appl. Math. 131, 361–380 (2001)

    Article  MathSciNet  Google Scholar 

  23. Novati, P.: A polynomial method based on Fejèr points for the computation of functions of unsymmetric matrices. Appl. Numer. Math. 44, 201–224 (2003)

    Article  MathSciNet  Google Scholar 

  24. Opitz, V.G.: Steigungsmatrizen. Z. Angew. Math. Mech. 44, T52–T54 (1964)

    MathSciNet  MATH  Google Scholar 

  25. Reichel, L.: Newton interpolation at Leja points. BIT 30, 332–346 (1990)

    Article  MathSciNet  Google Scholar 

  26. Schaefer, M.J.: A polynomial based iterative method for linear parabolic equations. J. Comput. Appl. Math. 29, 35–50 (1990)

    Article  MathSciNet  Google Scholar 

  27. Stetekluh, J.: http://stetekluh.com/NewtonPoly.html. Accessed 4 Oct 2017

  28. Tal-Ezer, H.: High degree polynomial interpolation in Newton form. SIAM J. Sci. Stat. Comput. 12(3), 648–667 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Caliari.

Additional information

Communicated by Daniel Kressner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caliari, M., Kandolf, P. & Zivcovich, F. Backward error analysis of polynomial approximations for computing the action of the matrix exponential. Bit Numer Math 58, 907–935 (2018). https://doi.org/10.1007/s10543-018-0718-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-018-0718-9

Keywords

Mathematics Subject Classification

Navigation