Skip to main content
Log in

Robust three-field finite element methods for Biot’s consolidation model in poroelasticity

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We propose a new finite element method for a three-field formulation of Biot’s consolidation model in poroelasticity and prove the a priori error estimates. Uniform-in-time error estimates of all the unknowns are obtained for both semidiscrete solutions and fully discrete solutions with the backward Euler time discretization. In contrast to previous results, the implicit constants in our error estimates are uniformly bounded as the Lamé coefficient indicating incompressiblity of poroelastic medium is arbitrarily large, and as the constrained specific storage coefficient is arbitrarily small. Therefore the method does not suffer from the volumetric locking of linear elasticity and provides robust error estimates without additional assumptions on the constrained specific storage coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anandarajah, A.: Computational Methods in Elasticity and Plasticity: Solids and Porous Media. Springer, New York (2010)

    Book  MATH  Google Scholar 

  2. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73(247), 1067–1087 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezis, H.: Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. Théorie et applications. Masson, Paris (1983)

    Google Scholar 

  6. Chen, Y., Luo, Y., Feng, M.: Analysis of a discontinuous Galerkin method for the Biot’s consolidation problem. Appl. Math. Comput. 219(17), 9043–9056 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Guzmán, J., Neilan, M.: A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32(4), 1484–1508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haga, J.B., Osnes, H., Langtangen, H.P.: On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int. J. Numer. Analyt. Methods Geomech. 36(12), 1507–1522 (2012)

    Article  Google Scholar 

  9. Korsawe, J., Starke, G.: A least-squares mixed finite element method for Biot’s consolidation problem in porous media. SIAM J. Numer. Anal. 43(1), 318–339 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, Numerical Methods in Engineering. Wiley, New York (1998)

    MATH  Google Scholar 

  11. Mardal, K.-A., Tai, X.-C., Winther, R.: A robust finite element method for Darcy–Stokes flow. SIAM J. Numer. Anal. 40(5), 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mardal, K.-A., Winther, R.: An observation on Korn’s inequality for nonconforming finite element methods. Math. Comput. 75(253), 1–6 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Murad, M.A., Loula, A.F.D.: Improved accuracy in finite element analysis of Biot’s consolidation problem. Comput. Methods Appl. Mech. Eng. 95(3), 359–382 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Murad, M.A., Loula, A.F.D.: On stability and convergence of finite element approximations of Biot’s consolidation problem. Int. J. Numer. Methods Eng. 37(4), 645–667 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Murad, M.A., Thomée, V., Loula, A.F.D.: Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J. Numer. Anal. 33(3), 1065–1083 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. II. The discrete-in-time case. Comput. Geosci. 11(2), 145–158 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Phillips, P.J., Wheeler, M.F.: Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput. Geosci. 13(1), 5–12 (2009)

    Article  MATH  Google Scholar 

  20. Reed, M.B.: An investigation of numerical errors in the analysis of consolidation by finite elements. Int. J. Numer. Analyt. Methods Geomech. 8(3), 243–257 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tai, X.-C., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43(4), 287–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vermeer, P.A., Verruijt, A.: An accuracy condition for consolidation by finite elements. Int. J. Numer. Analyt. Methods Geomech. 5(1), 1–14 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yi, S.-Y.: A coupling of nonconforming and mixed finite element methods for Biot’s consolidation model. Numer. Methods Part. Diff. Eq. 29(5), 1749–1777 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yosida, K.: Functional Analysis, Springer Classics in Mathematics, 6th edn. Springer, Berlin (1980)

    Google Scholar 

  26. Zhang, S., Xie, X., Chen, Y.: Low order nonconforming rectangular finite element methods for Darcy–Stokes problems. J. Comput. Math. 27(2–3), 400–424 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Zienkiewicz, O.C., Shiomi, T.: Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. Int. J. Numer. Analyt. Methods Geomech. 8(1), 71–96 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghun J. Lee.

Additional information

Communicated by Ralf Hiptmair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.J. Robust three-field finite element methods for Biot’s consolidation model in poroelasticity. Bit Numer Math 58, 347–372 (2018). https://doi.org/10.1007/s10543-017-0688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-017-0688-3

Keywords

Mathematics Subject Classification

Navigation