Skip to main content
Log in

A new framework for multi-parameter regularization

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes a new approach for choosing the regularization parameters in multi-parameter regularization methods when applied to approximate the solution of linear discrete ill-posed problems. We consider both direct methods, such as Tikhonov regularization with two or more regularization terms, and iterative methods based on the projection of a Tikhonov-regularized problem onto Krylov subspaces of increasing dimension. The latter methods regularize by choosing appropriate regularization terms and the dimension of the Krylov subspace. Our investigation focuses on selecting a proper set of regularization parameters that satisfies the discrepancy principle and maximizes a suitable quantity, whose size reflects the quality of the computed approximate solution. Theoretical results are shown and illustrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Belge, M., Kilmer, M.E., Miller, E.L.: Efficient determination of multiple regularization parameters in a generalized L-curve framework. Inverse Probl. 18, 1161–1183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brezinski, C., Redivo-Zaglia, M., Rodriguez, G., Seatzu, S.: Multi-parameter regularization techniques for ill-conditioned linear systems. Numer. Math. 94, 203–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 123, 423–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  5. Fornasier, M., Naumova, V., Pereverzyev, S.V.: Parameter choice strategies for multipenalty regularization. SIAM J. Numer. Anal. 52, 1770–1794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gazzola, S., Novati, P.: Multi-parameter Arnoldi–Tikhonov methods. Electron. Trans. Numer. Anal. 40, 452–475 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Gazzola, S., Novati, P., Russo, M.R.: Embedded techniques for choosing the parameter in Tikhonov regularization. Numer. Linear Algebra Appl. 21, 796–812 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gazzola, S., Novati, P., Russo, M.R.: On Krylov projection methods and Tikhonov regularization. Electron. Trans. Numer. Anal. 44, 83–123 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Hansen, P.C.: Regularization tools: a matlab package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6, 1–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  11. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra and Filtering. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  12. Hochstenbach, M.E., McNinch, N., Reichel, L.: Discrete ill-posed least-squares problems with a solution norm constraint. Linear Algebra Appl. 436, 3801–3818 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hochstenbach, M.E., Reichel, L.: An iterative method for Tikhonov regularization with a general linear regularization operator. J. Integral Equ. Appl. 22, 463–480 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hochstenbach, M.E., Reichel, L.: Combining approximate solutions for linear discrete ill-posed problems. J. Comput. Appl. Math. 236, 2179–2185 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ito, K., Jin, B., Takeuchi, T.: Multi-parameter Tikhonov regularization. Methods Appl. Anal. 18, 31–46 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Kunisch, K., Pock, T.: A bilevel optimization approach for parameter learning in variational methods. SIAM J. Imaging Sci. 6, 938–983 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lewis, B., Reichel, L.: Arnoldi–Tikhonov regularization methods. J. Comput. Appl. Math. 226, 92–102 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lu, S., Pereverzev, S.V.: Multi-parameter regularization and its numerical realization. Numer. Math. 118, 1–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, S., Pereverzev, S.V., Shao, Y., Tautenhahn, U.: Discrepancy curves for multi-parameter regularization. J. Inverse Ill-Posed Probl. 18, 655–676 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mead, J.L.: Discontinuous parameter estimates with least squares estimators. Appl. Math. Comput. 219, 5210–5223 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Morigi, S., Reichel, L., Sgallari, F.: Orthogonal projection regularization operators. Numer. Algorithms 44, 99–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Morozov, V.A.: On the solution of functional equations by the method of regularization. Soviet Math. Dokl. 7, 414–417 (1966)

    MathSciNet  MATH  Google Scholar 

  24. Nagy, J.G., Palmer, K.M., Perrone, L.: Iterative methods for image deblurring: a matlab object oriented approach. Numer. Algorithms 36, 73–93 (2004). http://www.mathcs.emory.edu/~nagy/RestoreTools

  25. Regińska, T.: Two-parameter discrepancy principle for combined projection and Tikhonov regularization of ill-posed problems. J. Inverse Ill-Posed Probl. 21, 561–577 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Reichel, L., Sgallari, F., Ye, Q.: Tikhonov regularization based on generalized Krylov subspace methods. Appl. Numer. Math. 62, 1215–1228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reichel, L., Ye, Q.: Simple square smoothing regularization operators. Electron. Trans. Numer. Anal. 33, 63–83 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Reichel, L., Yu, X.: Matrix decompositions for Tikhonov regularization. Electron. Trans. Numer. Anal. 43, 223–243 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Giuseppe Rodriguez for providing us with the GCV-based multi-parameter regularization software, as well as to the editor and referees for remarks that lead to improvements of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Additional information

Communicated by Rosemary Renaut.

Research supported in part by the GNCS project “Giovani Ricercatori”, by the “ex-60 %” funds of the University of Padova, and by NSF Grant DMS-1115385.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazzola, S., Reichel, L. A new framework for multi-parameter regularization. Bit Numer Math 56, 919–949 (2016). https://doi.org/10.1007/s10543-015-0595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-015-0595-4

Keywords

Mathematics Subject Classification

Navigation