Skip to main content
Log in

Convergence properties of a quadrature formula of Clenshaw–Curtis type for the Gegenbauer weight function

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A quadrature formula of Clenshaw–Curtis type for functions of the form \((1-x^2)^{\lambda - \frac{1}{2}}f(x)\) over the interval [\(-\)1,1] exhibits a curious phenomenon when applied to certain analytic functions. As the number of points in the quadrature rule increases the error may sometimes decay to zero in two distinct stages rather than in one depending on the value of \(\lambda \). In this paper we shall derive explicit and asymptotic error formulae which describe this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bell, W.W.: Special Functions for Scientists and Engineers. Van Nostrand Reinhold Co., London (1968)

    MATH  Google Scholar 

  2. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2, 197–205 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  3. Elliott, D., Johnston, B.M., Johnston, P.R.: Clenshaw-Curtis and Gauss-Legendre quadrature for certain boundary element integrals. SIAM J Sci. Comput 31, 510–530 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hunter, D.B., Smith, H.V.: A quadrature formula of Clenshaw-Curtis type for the Gegenbauer weight function. J. Comput. Appl. Math. 177, 389–400 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hyslop, J.M.: Infinte Series. Oliver and Boyd Ltd., Edinburgh (1959)

    Google Scholar 

  6. Krylov, V.I.: Approximate Calculation of Integrals. The Macmillan Co., New York (1962)

    MATH  Google Scholar 

  7. Smith, H.V.: A correction term for Gauss-Legendre quadrature. Int. J. Math. Educ. Sci. Technol. 34, 53–56 (2003)

    Article  Google Scholar 

  8. Smith, H.V.: A correction term for Gauss-Gegenbauer quadrature. Int. J. Math. Educ. Sci. Technol. 35, 363–367 (2004)

    Article  Google Scholar 

  9. Smith, H.V.: Numerical integration–a different approach. Math. Gaz. 90, 21–24 (2006)

    Google Scholar 

  10. Smith, H.V.: The numerical evaluation of the error term in Gaussian quadrature rules. Int. J. Math. Educ. Sci. Technol. 37, 201–205 (2006)

    Article  Google Scholar 

  11. Smith, H.V.: The evaluation of the error term in some Gauss-type formulae for the approximation of Cauchy Principal Value integrals. Int. J. Math. Educ. Sci. Technol. 39, 69–76 (2008)

    Article  Google Scholar 

  12. Smith, H.V., Hunter, D.B.: The numerical evaluation of the error term in a quadrature formula of Clenshaw-Curtis type for the Gegenbauer weight function. BIT 51, 1031–1038 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. Coll. Pub, XXIII (1975)

    MATH  Google Scholar 

  14. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Weideman, J.A.C., Trefethen, L.N.: The kink phenomenon in Fejér and Clenshaw-Curtis quadrature. Numer. Math. 107, 707–727 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is indebted to both referees for their very helpful comments which have led to a considerable improvement of the paper and my grateful thanks go to Nairn Kennedy whose technical expertise proved invaluable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Smith.

Additional information

Communicated by Lothar Reichel.

This paper is dedicated to my wife Janice and to our son Richard.

Appendices

Appendices

(A1) For any integer \(p=0,1,2,\ldots \)

  1. (a)

    By inspection

    $$\begin{aligned} \frac{B\prod _{i=0}^{2p}(1-2p+2i)}{2^{2p}(2p)!} = L. \end{aligned}$$
  2. (b)

    From (3.3) for \( r\ge 2 \)

    $$\begin{aligned} Z_{r}\left( \frac{2p+1}{2}\right) = \prod _{i=0}^{2p}(1-2p+2i)\; \prod _{j=0}^{2p}\frac{1}{2r-2p+2j-1}\nonumber \\ = \frac{1}{2^{2p}\,(2p)!}\prod _{i=0}^{2p}(1-2p+2i)\; \sum _{j=0}^{2p}\frac{(-1)^{j}\,C_{j}^{2p}}{2r-2p+2j-1}. \end{aligned}$$
    (7.1)

    Bearing in mind part (a) we see that from (7.1)

    $$\begin{aligned} BZ_{r}\left( \frac{2p+1}{2}\right) = L\,\sum _{j=0}^{2p} \frac{(-1)^{j}\ C_{j}^{2p}}{2r-2p+2j-1}. \end{aligned}$$

(A2)

  1. (a)

    If we reverse the order of the inner summation followed by the order of the outer summation in the following we see that

    $$\begin{aligned}&\sum _{j=p+1}^{2p} \left( (-1)^{j}\ C_{j}^{2p}\sum _{k=1}^{j-p} \frac{\zeta ^{2k-1}}{n+(2j-2p-2k+1)} \right) \nonumber \\&\quad = \sum _{j=1}^{p} \left( (-1)^{p-j}\ C_{p-j}^{2p}\,\sum _{k=1}^{j} \frac{\zeta ^{2j+1-2k}}{n+(2k-1)} \right) \nonumber \\&\quad = \sum _{j=0}^{p-1} \left( (-1)^{j} C_{j}^{2p}\sum _{k=1}^{p-j} \frac{\zeta ^{2p-2j-2k+1}}{n+(2k-1)}\right) . \end{aligned}$$
    (7.2)
  2. (b)

    By substituting \(n=0\) into (7.2), rearranging the terms on the left-hand side and finally substituting \( 1/\zeta \) for \( \zeta \) into the resulting expression it follows that

    $$\begin{aligned}&\sum _{j=p+1}^{2p} \left( (-1)^{j}\ C_{j}^{2p}\zeta ^{-2(j-p)}\sum _{k=1}^{j-p} \frac{\zeta ^{2k-1}}{2k-1} \right) \nonumber \\&\quad = \sum _{j=0}^{p-1} \left( (-1)^{j}\ C_{j}^{2p}\zeta ^{-2(p-j)}\sum _{k=1}^{p-j} \frac{\zeta ^{2k-1}}{2k-1} \right) . \end{aligned}$$

    (A3)

    $$\begin{aligned}&\sum _{j=0}^{p-1} \left( (-1)^{j}\ C_{j}^{2p}\;\zeta ^{2p-2j}\, \left( \sum _{k=1}^{p-j} \frac{(2k-1)\zeta ^{-(2k-1)}}{n^{2}-(2k-1)^{2}} \right) \right) \nonumber \\&\quad = \sum _{j=0}^{p-1}\left( \left( \sum _{k=0}^{j} (-1)^{k}\ C_{k}^{2p} \;\zeta ^{2j-(2k-1)}\right) \frac{2p-2j-1}{n^{2}-(2p-2j-1)^{2}}\right) . \end{aligned}$$
    (7.3)

Proof

The right-hand side of (7.3) follows by rewriting the left-hand side, which is a summation in terms of \( C_{r}^{2p} \;\zeta ^{2p-2r}\), as a summation in terms of \((2p-2r-1)/(n^{2}-(2p-2r-1)^{2})\).

(A4)

$$\begin{aligned}&\sum _{j=0}^{p-1} \left( (-1)^{j}\; C_{j}^{2p}\sum _{k=1}^{p-j} \frac{\zeta ^{-(2k-1)}}{n-(2p-2j-2k+1)} \right) \\&\quad = \sum _{j=0}^{p-1} \left( (-1)^{j}\ C_{j}^{2p}\sum _{k=1}^{p-j} \frac{\zeta ^{2j-2p+2k-1}}{n-(2k-1)} \right) \end{aligned}$$

\(\square \)

Proof

The inner summation on the left-hand side is of the form

$$\begin{aligned} \sum _{k=1}^{M_{j}} \frac{\zeta ^{-(2k-1)}}{n-(2M_{j}-(2k-1))}, \end{aligned}$$
(7.4)

and on the right-hand side of the form

$$\begin{aligned} \sum _{k=1}^{M_{j}} \frac{\zeta ^{-(2M_{j}-(2k-1))}}{n-(2k-1)}, \end{aligned}$$
(7.5)

where \(M_{j}=p-j\). For j fixed (7.4) and  (7.5) are equivalent, hence the result follows. \(\square \)

(A5) Assume \( z \in \varepsilon _{\rho } \) then

$$\begin{aligned} 2z\left( \;\sum _{s=0}^{r-1}\ (-1)^{s}\left( \zeta ^{2(r-s)} + \frac{1}{\zeta ^{2(r-s)}}\right) + (-1)^{r}\;\right) = \zeta ^{2r+1}+\frac{1}{\zeta ^{2r+1}}. \end{aligned}$$
(7.6)

Proof

Since \(2z=\zeta +1/\zeta \) (7.6) follows immediately.

$$\begin{aligned} \mathbf {(A6)} \quad \sum _{k=0}^{j}\;(2j-2k+1) (-1)^{k} C_{k}^{2p} = (-1)^{j}\left( C_{j}^{2p-2} \;-\; C_{j-1}^{2p-2}\right) \quad 2p-2 \ge j. \end{aligned}$$

Proof

Using mathematical induction it is easy to deduce that

$$\begin{aligned} \sum _{k=0}^{r}\; (-1)^{k}\ C_{k}^{2p} \ =\ (-1)^{r}\ C_{r}^{2p-1} \qquad 2p \ge r+1, \end{aligned}$$
(7.7)

and by the factorial definition of \( \ C_{r}^{n}\), that

$$\begin{aligned} C_{r-1}^{2p-2} +\ C_{r+1}^{2p}-2\;C_{r}^{2p-1} = C_{r+1}^{2p-2} 2p \ge r+3. \end{aligned}$$
(7.8)

If we now bear in mind (7.7) and  (7.8) then, once again, by using mathematical induction the result follows. \(\square \)

(A7)

$$\begin{aligned}&\sum _{j=0}^{p-1}(2p-1-2j)\left( \sum _{k=0}^{j}\;(-1)^{k}\;C_{k}^{2p}\delta _{2j+1-2k} \right) \\&\quad =\left( \zeta -\frac{1}{\zeta }\right) ^{2p-2}\left( \zeta +\frac{1}{\zeta }\right) \ p=1,2,\ldots \end{aligned}$$

Proof

By rearranging the terms on the left-hand side and bearing in mind A6 the right-hand side follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, H.V. Convergence properties of a quadrature formula of Clenshaw–Curtis type for the Gegenbauer weight function. Bit Numer Math 55, 823–842 (2015). https://doi.org/10.1007/s10543-014-0520-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-014-0520-2

Keywords

Mathematics Subject Classification

Navigation