Skip to main content
Log in

Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We present a multivariate extension to Clenshaw-Curtis quadrature based on Sloan’s hyperinterpolation theory. At the centre of it, a cubature rule for integrals with Chebyshev weight function is needed. We introduce so called Chebyshev lattices as a generalising framework for the multitude of point sets that have been discussed in this context. This framework provides a uniform notation that extends easily to higher dimensions. In this paper we describe many known point sets as Chebyshev lattices.

In the introduction we briefly explain how convergence results from hyperinterpolation can be used in this context. After introducing Chebyshev lattices and the associated cubature rules, we show how most of the two- and three-dimensional point sets in this context can be described with this notation. The not so commonly known blending formulae from Godzina, which explicitly describe point sets in any number of dimensions, also fit in perfectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bos, L., Caliari, M., De Marchi, S., Vianello, M., Xu, Y.: Bivariate Lagrange interpolation at the Padua points: The generating curve approach. J. Approx. Theory 143(1), 15–25 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cools, R.: Constructing cubature formulas: the science behind the art. Acta Numer. 6, 1–54 (1997)

    Article  MathSciNet  Google Scholar 

  3. Cools, R., Schmid, H.J.: Minimal cubature formulas of degree 2k−1 for two classical functionals. Computing 43(2), 141–157 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Godzina, G.: Dreidimensionale kubaturformeln für zentralsymmetrische integrale. Ph.D. thesis, Universität Erlangen-Nürnberg (1994)

  5. Godzina, G.: Blending methods for two classical integrals. Computing 54(3), 273–282 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huiyuan Li, J.S., Xu, Y.: Cubature formula and interpolation on the cubic domain. Numer. Math. Theor. Methods Appl. 2(2), 119–152 (2009)

    MATH  Google Scholar 

  7. Marchi, S.D., Vianello, M., Xu, Y.: New cubature formulae and hyperinterpolation in three variables. BIT Numer. Math. 49, 55–73 (2009)

    Article  MATH  Google Scholar 

  8. Möller, H.: Kubaturformeln mit minimaler Knotenzahl. Numer. Math. 25, 185–200 (1976)

    Article  MATH  Google Scholar 

  9. Morrow, C.R., Patterson, T.N.L.: Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal. 15(5), 953–976 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Noskov, M.: Analogs of Morrow-Patterson type cubature formulas. J. Comput. Math. Math. Phys. 30, 1254–1257 (1991)

    MathSciNet  Google Scholar 

  11. Schmid, H.J.: Interpolatorische kubaturformeln (1983)

  12. Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83(2), 238–254 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford Science, Oxford (1994)

    MATH  Google Scholar 

  14. Sommariva, A., Vianello, M., Zanovello, R.: Nontensorial Clenshaw-Curtis cubature. Numer. Algorithms 49(1–4), 409–427 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Verlinden, P., Cools, R., Roose, D., Haegemans, A.: The construction of cubature formulae for a family of integers: a bifurcation problem. Computing 40(4), 337–346 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Poppe.

Additional information

Communicated by Lothar Reichel.

This Project has benefited from the financial support of the Fund for Scientific Research–Flanders (Belgium) through project grants. This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science Policy Office. The scientific responsibility rests with its author(s).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cools, R., Poppe, K. Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function. Bit Numer Math 51, 275–288 (2011). https://doi.org/10.1007/s10543-010-0300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0300-6

Keywords

Mathematics Subject Classification

Navigation