Skip to main content
Log in

Component splitting for semi-discrete Maxwell equations

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

A time-integration scheme for semi-discrete linear Maxwell equations is proposed. Special for this scheme is that it employs component splitting. The idea of component splitting is to advance the greater part of the components of the semi-discrete system explicitly in time and the remaining part implicitly. The aim is to avoid severe step size restrictions caused by grid-induced stiffness emanating from locally refined space grids. The proposed scheme is a blend of an existing second-order composition scheme which treats wave terms explicitly and the second-order implicit trapezoidal rule. The new blended scheme retains the composition property enabling higher-order composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Botchev, M.A., Verwer, J.G.: Numerical integration of damped Maxwell equations. SIAM J. Sci. Comput. 31, 1322–1346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Diaz, J., Grote, M.J.: Energy conserving explicit local time stepping for second-order wave equations. SIAM J. Sci. Comput. 31, 1985–2014 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dolean, V., Fahs, H., Fezoui, L., Lanteri, S.: Locally implicit discontinuous Galerkin method for time domain electromagnetics. J. Comput. Phys. 229, 512–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grote, M.J., Mitkova, T.: Explicit local time stepping methods for Maxwell’s equations. J. Comput. Appl. Math. 234, 3283–3302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, 2nd edn. Springer Series in Computational Mathematics, vol. 31, Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer Series in Computational Mathematics, vol. 33. Springer, Berlin (2003)

    MATH  Google Scholar 

  7. McLachlan, R.I.: On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Sci. Comput. 16, 151–168 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Monk, P., Süli, S.: A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31, 393–412 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rodrigue, G., White, D.: A vector finite element time-domain method for solving Maxwell’s equations on unstructured hexahedral grids. SIAM J. Sci. Comput. 23, 683–706 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sanz-Serna, J.M., Verwer, J.G., Hundsdorfer, W.H.: Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations. Numer. Math. 50, 405–418 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Verlet, L.: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennart-Jones molecules. Phys. Rev. 159, 98–103 (1967)

    Article  Google Scholar 

  12. Verwer, J.G., Botchev, M.A.: Unconditionally stable integration of Maxwell’s equations. Linear Algebra Appl. 431, 300–317 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Verwer, J.G.: Convergence and component splitting for the Crank-Nicolson–Leap-Frog integration method. CWI Report MAS-E0902. http://ftp.cwi.nl/CWIreports/MAS/MAS-E0902.pdf (2009)

  14. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Verwer.

Additional information

Communicated by Per Lötstedt.

Jan Verwer passed away on 16 February 2011, while this paper was in press.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verwer, J.G. Component splitting for semi-discrete Maxwell equations. Bit Numer Math 51, 427–445 (2011). https://doi.org/10.1007/s10543-010-0296-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0296-y

Keywords

Mathematics Subject Classification (2000)

Navigation