Skip to main content
Log in

An Efficient Meshless Method for Solving Multi-dimensional Nonlinear Schrödinger Equation

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

In this article, we study an efficient combination of the meshless local Petrov–Galerkin and time-splitting methods for the numerical solution of nonlinear Schrödinger equation in two and three dimensions. The Strang splitting technique is used to separate the original equation in two parts, linear and nonlinear. The linear part is approximated with the meshless local Petrov–Galerkin method in the space variable and the Crank–Nicolson method in time. Also, the nonlinear part can be solved analytically. We use the moving Kriging interpolation instated of the moving least squares approximation to make the shape functions of the meshless local Petrov–Galerkin method which have the Kronecker delta property, so the Dirichlet boundary condition is imposed directly and easily. In the meshless local Petrov–Galerkin method, the Heaviside step function is chosen as the test function in each sub-domain. Several test problems for two and three dimensions are presented, and the results are compared to their analytical and other numerical methods to illustrate the accuracy and capability of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abbasbandy S, Shirzadi A (2011) MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. Appl Numer Math 61(2):170–180

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Ghehsareh HR, Hashim I (2013) A meshfree method for the solution of two-dimensional cubic nonlinear Schrödinger equation. Eng Anal Boundary Elem 37(6):885–898

    Article  MathSciNet  MATH  Google Scholar 

  • Atluri SN, Shen S (2002) The meshless local Petrov–Galerkin (MLPG) method: a simple & less-costly alternative to the finite element and boundary element methods. Comput Model Eng Sci 3(1):11–51

    MathSciNet  MATH  Google Scholar 

  • Atluri SN, Zhu T (1998) A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  MATH  Google Scholar 

  • Bai D, Zhang L (2011) Numerical studies on a novel split-step quadratic B-spline finite element method for the coupled Schrödinger-KdV equations. Commun Nonlinear Sci Numer Simul 16(3):1263–1273

    Article  MathSciNet  MATH  Google Scholar 

  • Bao W, Shen J (2005) A fourth-order time-splitting Laguerre-Hermite pseudo spectral method for Bose-Einstein condensates. SIAM J Sci Comput 26(6):2010–2028

    Article  MathSciNet  MATH  Google Scholar 

  • Bui TQ, Nguyen MN, Zhang C (2011) A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis. Comput Methods Appl Mech Eng 200(13–16):1354–1366

    Article  MATH  Google Scholar 

  • Chen L, Liew KM (2011) A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems. Comput Mech 47(4):455–467

    Article  MathSciNet  MATH  Google Scholar 

  • Dai B, Cheng J, Zheng B (2013) A moving Kriging interpolation-based meshless local Petrov-Galerkin method for elastodynamic analysis. Int J Appl Mech 5(01):1350011

    Article  Google Scholar 

  • Dai B, Zheng B, Liang Q, Wang L (2013) Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method. Appl Math Comput 219(19):10044–10052

    MathSciNet  MATH  Google Scholar 

  • Degond P, Jin S, Tang M (2008) On the time splitting spectral method for the complex Ginzburg-Landau equation in the large time and space scale limit. SIAM J Sci Comput 30(5):2466–2487

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M (2006) Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math Comput Simul 71(1):16–30

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Mirzaei D (2008) The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation. Eng Anal Boundary Elem 32(9):747–756

    Article  MATH  Google Scholar 

  • Dehghan M, Mohammadi V (2016) Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein-Gordon-Schrödinger (KGS) equations. Comput Math Appl 71(4):892–921

    Article  MathSciNet  Google Scholar 

  • Dehghan M, Mohammadi V (2017) A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge-Kutta method. Comput Phys Commun 217:23–34

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Shokri A (2007) A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions. Comput Math Appl 54(1):136–146

    Article  MathSciNet  MATH  Google Scholar 

  • Dehghan M, Taleei A (2011) A Chebyshev pseudospectral multidomain method for the soliton solution of coupled nonlinear Schrödinger equations. Comput Phys Commun 182(12):2519–2529

    Article  MATH  Google Scholar 

  • Dereli Y (2012) The meshless kernel-based method of lines for the numerical solution of the nonlinear Schrödinger equation. Eng Anal Boundary Elem 36(9):1416–1423

    Article  MathSciNet  MATH  Google Scholar 

  • Ducomet B, Zlotnik A, Romanova A (2015) On a splitting higher-order scheme with discrete transparent boundary conditions for the Schrödinger equation in a semi-infinite parallelepiped. Appl Math Comput 255:196–206

    MathSciNet  MATH  Google Scholar 

  • Fasshauer Gregory E (2007) Meshfree approximation methods with MATLAB, USA World Scientific

  • Gao Z, Xie S (2011) Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations. Appl Numer Math 61(4):593–614

    Article  MathSciNet  MATH  Google Scholar 

  • Gu L (2003) Moving kriging interpolation and element free Galerkin method. Int J Numer Meth Eng 56(1):1–11

    Article  MATH  Google Scholar 

  • Hong Y, Lu J, Lin J, Chen W (2019) Numerical simulation of nonlinear Schrödinger equations in arbitrary domain by the localized method of approximate particular solution. Adv Appl Math Mech 11(1):108–131

    Article  MathSciNet  Google Scholar 

  • Hu H, Chen Y (2016) A conservative difference scheme for two dimensional nonlinear Schrödinger equation with wave operator. Numer Methods Part Differ Equ 32(3):862–876

    Article  MATH  Google Scholar 

  • Ilati M, Dehghan M (2015) Meshless local weak form method based on a combined basis function for numerical investigation of Brusselator model and spike dynamics in the Gierer-Meinhardt system. Comput Model Eng Sci (CMES) 109(4):325–360

    Google Scholar 

  • Ilati M, Dehghan M (2016) Remediation of contaminated groundwater by meshless local weak forms. Comput Math Appl 72(9):2408–2416

    Article  MathSciNet  MATH  Google Scholar 

  • Ilati M, Dehghan M (2017) Application of direct meshless local Petrov-Galerkin (DMLPG) method for some Turing-type models. Eng Comput 33(1):107–124

    Article  Google Scholar 

  • Ilati M, Dehghan M (2019) DMLPG method for numerical simulation of soliton collisions in multi-dimensional coupled damped nonlinear Schrödinger system which arises from Bose-Einstein condensates. Appl Math Comput 346:244–253

    MathSciNet  MATH  Google Scholar 

  • Jin J, Wei N, Zhang H (2015) A two-grid finite-element method for the nonlinear Schrödinger equation. J Comput Math 33:146–157

    Article  MathSciNet  MATH  Google Scholar 

  • Kaewumpai S (2015) Meshless method based on moving Kriging interpolation for solving simply supported thin plate problems. Eng J 19(3):1–14

    Article  Google Scholar 

  • Kaplan AG, Dereli Y (2017) A meshless method and stability analysis for the nonlinear Schrödinger equation. Waves in Random and Complex Media 27(4):602–614

    Article  MathSciNet  Google Scholar 

  • Kassam AK, Trefethen LN (2005) Fourth-order time-stepping for stiff PDEs. SIAM J Sci Comput 26(4):1214–1233

    Article  MathSciNet  MATH  Google Scholar 

  • Li X, Zhang L, Wang S (2012) A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator. Appl Math Comput 219(6):3187–3197

    MathSciNet  MATH  Google Scholar 

  • Liao F, Zhang L, Wang S (2018) Time-splitting combined with exponential wave integrator Fourier pseudo spectral method for Schrödinger-Boussinesq system. Commun Nonlinear Sci Numer Simul 55:93–104

    Article  MathSciNet  Google Scholar 

  • Phaochoo P, Luadsong A, Aschariyaphotha N (2016) The meshless local Petrov-Galerkin based on moving kriging interpolation for solving fractional Black-Scholes model. J King Saud Univ-Sci 28(1):111–117

    Article  Google Scholar 

  • Shi D, Liao X, Wang L (2016) Super convergence analysis of conforming finite element method for nonlinear Schrödinger equation. Appl Math Comput 289:298–310

    MathSciNet  MATH  Google Scholar 

  • Shi D, Liao X, Wang L (2017) A nonconforming quadrilateral finite element approximation to nonlinear Schrödinger equation. Acta Math Sci 37(3):584–592

    Article  MathSciNet  MATH  Google Scholar 

  • Shokri A, Habibirad A (2016) A moving Kriging based MLPG method for nonlinear Klein-Gordon equation. Math Methods Appl Sci 39(18):5381–5394

    Article  MathSciNet  MATH  Google Scholar 

  • Teschl G (2009) Mathematical methods in quantum mechanics. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Wang H (2010) An efficient Chebyshev-Tau spectral method for Ginzburg-Landau-Schrödinger equations. Comput Phys Commun 181(2):325–340

    Article  MATH  Google Scholar 

  • Wang J, Huang Y (2017) Fully discrete Galerkin finite element method for the cubic nonlinear Schrödinger equation. Numer Math Theory Methods Appl 10(3):671–688

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Zhang L (2019) Split-step cubic B-spline collocation methods for nonlinear Schrödinger equations in one, two, and three dimensions with Neumann boundary conditions. Numer Algorithms 81(4):1531–1546

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Wang T, Zhang L (2013) Numerical computations for N-coupled nonlinear Schrödinger equations by split step spectral methods. Appl Math Comput 222:438–452

    MathSciNet  MATH  Google Scholar 

  • Xing-Guo L, Bao-Dong D, Ling-Hui W (2010) A moving Kriging interpolation-based boundary node method for two-dimensional potential problems. Chin Phys B 19(12):120202

    Article  Google Scholar 

  • Xu Y, Zhang L (2012) Alternating direction implicit method for solving two-dimensional cubic nonlinear Schrödinger equation. Comput Phys Commun 183(5):1082–1093

    Article  MathSciNet  MATH  Google Scholar 

  • Yıldırım Aksoy N, Hào DN, Yagub G (2017) Finite difference method for an optimal control problem for a nonlinear time-dependent Schrödinger equation. Numer Funct Anal Optim 38(6):799–817

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang S, Chen S (2016) A meshless symplectic method for two-dimensional Schrödinger equation with radial basis functions. Comput Math Appl 72(9):2143–2150

    Article  MathSciNet  MATH  Google Scholar 

  • Zheng B, Dai B (2011) A meshless local moving Kriging method for two-dimensional solids. Appl Math Comput 218(2):563–573

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmail Hesameddini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibirad, A., Hesameddini, E. & Taleei, A. An Efficient Meshless Method for Solving Multi-dimensional Nonlinear Schrödinger Equation. Iran J Sci Technol Trans Sci 44, 749–761 (2020). https://doi.org/10.1007/s40995-020-00864-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-00864-w

Keywords

Navigation