Skip to main content
Log in

Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The singular value decomposition and spectral norm of a matrix are ubiquitous in numerical analysis. They are extensively used in proofs, but usually it is not necessary to compute them. However, there are some important applications in the realm of verified error bounds for the solution of ordinary and partial differential equations where reasonably tight error bounds for the spectral norm of a matrix are mandatory. We present various approaches to this together with some auxiliary useful estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Collatz, L.: Einschließungssatz für die charakteristischen Zahlen von Matrizen. Math. Z. 48, 221–226 (1942)

    Article  MathSciNet  Google Scholar 

  2. Demmel, J.: On floating point errors in Cholesky. LAPACK Working Note 14 CS-89-87, Department of Computer Science, University of Tennessee, Knoxville, TN, USA (1989)

  3. Duff, I.S., Grimes, R.G., Lewis, J.G.: User’s guide for Harwell-Boeing sparse matrix test problems collection. RAL-92-086, Computing and Information Systems Department, Rutherford Appleton Laboratory, Didcot, UK (1992)

  4. Elsner, L.: Private communication (2010)

  5. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  6. Higham, N.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM Publications, Philadelphia (2002)

    Book  MATH  Google Scholar 

  7. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  8. ANSI/IEEE 754-2008: IEEE Standard for Floating-Point Arithmetic. New York (2008)

  9. Nakao, M.: A numerical approach to the proof of existence of solutions for elliptic problems. Jpn. J. Appl. Math. 5(2), 313–332 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nakao, M.: Solving nonlinear elliptic problems with result verification using an H −1type residual iteration. Computing, 161–173 (1993)

  11. Nakao, M., Hashimoto, K., Watanabe, Y.: A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems. Computing 75(1), 1–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  13. Neumaier, A.: Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  14. Oishi, S.: Private communication (1998)

  15. Rump, S.: Verification methods for dense and sparse systems of equations. In: Herzberger, J. (ed.) Topics in Validated Computations—Studies in Computational Mathematics, pp. 63–136. Elsevier, Amsterdam (1994)

    Google Scholar 

  16. Rump, S.: INTLAB-INTerval LABoratory. In: Csendes, T. (ed.) Developments in Reliable Computing, pp. 77–104. Kluwer Academic, Dordrecht (1999). http://www.ti3.tu-harburg.de/rump/intlab/index.html

    Google Scholar 

  17. Rump, S.M.: Fast and parallel interval arithmetic. BIT Numer. Math. 39, 539–560 (1999)

    Google Scholar 

  18. Rump, S.: Verification of positive definiteness. BIT Numer. Math. 46, 433–452 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rump, S.: Verification methods: rigorous results using floating-point arithmetic. Acta Numer. 19, 287–449 (2010)

    Article  MathSciNet  Google Scholar 

  20. Stewart, G.: Matrix Algorithms: vol. 1, Basic Decompositions. Society for Industrial Mathematics, Philadelphia (1998)

    MATH  Google Scholar 

  21. Takayasu, A., Oishi, S., Kubo, T.: Guaranteed error estimate for solutions to linear two-point boundary value problems with FEM. In: Proceedings of the International Symposium on Nonlinear Theory and its Applications (NOLTA2009), Sapporo, Japan, pp. 214–217 (2009)

    Google Scholar 

  22. Takayasu, A., Oishi, S., Kubo, T.: Guaranteed error estimate for solutions to two-point boundary value problem. In: Proceedings of the Asia Simulation Conference 2009 (JSST 2009), Shiga, Japan, pp. 1–8 (2009)

    Google Scholar 

  23. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM Publications, Philadelphia (1997)

    Book  MATH  Google Scholar 

  24. Varga, R.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)

    Google Scholar 

  25. Watanabe, Y., Plum, M., Nakao, M.: A computer-assisted instability proof for the Orr-Sommerfeld problem with Poiseuille flow. Z. Angew. Math. Mech. 89(1), 5–18 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Watanabe, Y., Nagatou, K., Plum, M., Nakao, M.: Some eigenvalue excluding methods for infinite dimensional operators. Manuscript (2010)

  27. Watanabe, Y.: A computer-assisted proof for the Kolmogorov flows of incompressible viscous fluid. J. Comput. Appl. Math. 223, 953–966 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried M. Rump.

Additional information

Communicated by Axel Ruhe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rump, S.M. Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse. Bit Numer Math 51, 367–384 (2011). https://doi.org/10.1007/s10543-010-0294-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-010-0294-0

Keywords

Mathematics Subject Classification (2000)

Navigation