Skip to main content
Log in

Programmed Cell Death in Plants: Ultrastructural Changes in Pea Guard Cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Treatment with cyanide of epidermal peels isolated from pea leaves resulted in destruction of nuclei in the guard cells of stomata, which is visible with a light microscope. The process was accelerated by illumination. Electron microscopy revealed significant CN induced changes in the ultrastructure of guard cells, which increased with time. Margination of chromatin, which is one of the first signs of apoptosis, was observed in the guard cells even after 1 h incubation of the isolated epidermis with CN. Subsequent chromatin condensation, swelling of the endoplasmic reticulum with formation of large tanks covered with ribosomes, changes in the structure of dictyosomes, and a slight swelling of mitochondria were observed after 3 h of the epidermis incubation with CN. After 6 h of incubation with CN, the bulk volume of the guard cells was filled with vacuoles, the cytoplasm occupied the thin marginal layer, the nucleus was in the center similarly to the control experiment, but it was polylobal, extended in narrow cytoplasmic bands, and, despite the loss of the nuclear envelope integrity, appeared to be a self-dependent structure. In the envelope-free open regions of the nucleus, mitochondria and chloroplasts directly contacted with chromatin. Much like the cell nucleus, chloroplasts lost the integrity of the membrane, but did not swell and retained the stroma and integrity of the thylakoid system. An antioxidant di-tert-butyl-4 hydroxytoluene prevented ultrastructural changes in the cells observed after 6 h of incubation with CN. Thus, the CN induced death of the guard cells of stomata occurs through the mechanism of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Samuilov, V. D., Oleskin, A. V., and Lagunova, E. M. (2000) Biochemistry (Moscow), 65, 873–887.

    Google Scholar 

  2. Vanyushin, B. F. (2001) Usp. Biol. Khim., 41, 3–38.

    Google Scholar 

  3. Jones, A. M. (2001) Plant Physiol., 125, 94–97.

    Article  PubMed  Google Scholar 

  4. Lam, E., Kato, N., and Lawton, M. (2001) Nature, 411, 848–853.

    Article  PubMed  Google Scholar 

  5. Skulachev, V. P. (2002) FEBS Lett., 528, 23–26.

    Article  PubMed  Google Scholar 

  6. Madeo, F., Engelhardt, S., Herker, E., Lehmann, N., Maldener, C., Proksch, A., Wissing, S., and Frohlich, K. U. (2002) Curr. Genet., 41, 208–216.

    Article  PubMed  Google Scholar 

  7. Van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., and Vandenabeele, P. (2002) Cell Death Differ., 9, 1031–1042.

    Article  PubMed  Google Scholar 

  8. Seo, S., Okamoto, M., Iwai, T., Iwano, M., Fukui, K., Isogai, A., Nakajima, N., and Ohashi, Y. (2000) Plant Cell, 12, 917–932.

    Article  PubMed  Google Scholar 

  9. Gray, J., Janick-Buckner, D., Buckner, B., Close, P. S., and Johal, G. S. (2002) Plant Physiol., 130, 1894–1907.

    Article  PubMed  Google Scholar 

  10. Wang, H., Li, J., Bostock, R. M., and Gilchrist, D. G. (1996) Plant Cell, 8, 375–391.

    Article  PubMed  Google Scholar 

  11. Ryerson, D. E., and Heath, M. C.(1996) Plant Cell, 8, 393–402.

    Article  PubMed  Google Scholar 

  12. Samuilov, V. D., Lagunova, E. M., Beshta, O. E., and Kitashov, A. V. (2000) Biochemistry (Moscow), 65, 696–702.

    Google Scholar 

  13. Zeiger, E., Talbott, L. D., Frechilla, S., Srivastava, A., and Zhu, J. (2002) New Phytologist, 153, 415–424.

    Google Scholar 

  14. Samuilov, V. D., Lagunova, E. M., Dzyubinskaya, E. V., Izyumov, D. S., Kiselevsky, D. B., and Makarova, Ya. V. (2002) Biochemistry (Moscow), 67, 627–634.

    Article  Google Scholar 

  15. Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Y. V., and Gusev, M. V. (2003) Biosci. Rep., 23, 103–117.

    Article  PubMed  Google Scholar 

  16. Reynolds, E. (1963) J. Cell Biol., 17, 208–212.

    Article  PubMed  Google Scholar 

  17. Kessler, F., Schnell, D., and Blober, G. (1999) Planta, 208, 107–113.

    Article  PubMed  Google Scholar 

  18. Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Brit. J. Cancer, 26, 239–257.

    PubMed  Google Scholar 

  19. Bakeeva, L. E., Skulachev, V. P., Sudarikova, Yu. V., and Tsyplenkova, V. G. (2001) Biochemistry (Moscow), 66, 1335–1341.

    Article  Google Scholar 

  20. Skulachev, V. P., Bakeeva, L. E., Chernyak, B. V., Domina, L. V., Minin, A. A., Pletjushkina, O. Yu., Saprunova, V. B., Skulachev, I. V., Tsyplenkova, V. G., Vasiliev, J. M., Yaguzinsky, L. S., and Zorov, D. V. (2004) Mol. Cell. Biochem., 256/257, 341–358.

    Article  PubMed  Google Scholar 

  21. Bakeeva, L. E., Kirnos, M. D., Aleksandrushkina, N. I., Kazimirchuk, S. B., Shorning, B. Yu., Zamyatnina, V. A., Yaguzhinsky, L. S., and Vanyushin, B. F. (1999) FEBS Lett., 457, 122–125.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Biokhimiya, Vol. 70, No. 9, 2005, pp. 1177–1185.

Original Russian Text Copyright © 2005 by Bakeeva, Dzyubinskaya, Samuilov.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM04-167, February 13, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakeeva, L.E., Dzyubinskaya, E.V. & Samuilov, V.D. Programmed Cell Death in Plants: Ultrastructural Changes in Pea Guard Cells. Biochemistry (Moscow) 70, 972–979 (2005). https://doi.org/10.1007/s10541-005-0211-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0211-3

Key words

Navigation