Skip to main content
Log in

Making sense of ‘genetic programs’: biomolecular Post–Newell production systems

  • Published:
Biology & Philosophy Aims and scope Submit manuscript

Abstract

The biomedical literature makes extensive use of the concept of a genetic program. So far, however, the nature of genetic programs has received no satisfactory elucidation from the standpoint of computer science. This unsettling omission has led to doubts about the very existence of genetic programs, on the grounds that gene regulatory networks lack a predetermined schedule of execution, which may seem to contradict the very idea of a program. I show, however, that we can make perfect sense of genetic programs, if only we abandon the preconception that all computers have a von Neumann architecture. Instead, genetic programs instantiate the computational architecture of Post–Newell Production Systems. That is, genetic programs are unordered sets of conditional instructions, instructions that fire independently when their conditions are matched. For illustration I present a paradigm Production System that regulates the functioning of the well-known lac operon of E. coli. On close reflection it turns out that not only genes, but also proteins encode instructions. I propose, therefore, to rename genetic programs to biomolecular programs. Biomolecular and/or genetic programs, and the cellular computers than run them, are to be understood not as von Neumann computers, but as Post–Newell production systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Let us note that cis-regulatory elements are not the only genes that encode instructions in biomolecular programs. CREs are located next to the structural genes that they regulate. Conditional instructions, however, may also be encoded by genes located in trans, i. e., relatively far from what they regulate. A classic example is transvection (Lewis 1954). Transvection occurs in diploid organisms in which a gene A is regulated by another gene B, with B located on the chromosome homologous to A’s.

  2. Monod 1942; Monod and Cohn 1978[1952]; Jacob et al. 1960; Jacob and Monod 1961a, 1961b.

  3. Abramson et al. 2003.

  4. Monod 1942; Novick and Weiner 1957.

  5. Perlman, Crombrugghe, and Pastan 1969; Beckwith, Grodzicker, and Arditti 1972; McKay and Steitz 1981; Aiba et al. 1982; Cossart and Gicquel-Sanzey 1982; Schultz et al. 1991.

  6. Gilbert and Müller-Hill 1966; Beyreuther et al. 1973; Farabaugh 1978.

  7. Gilbert and Maxam 1973.

  8. Reznikoff et al. 1974.

  9. Oehler et al. 1990; Santillán and Mackey 2008; Narang 2007.

  10. At the level of chemical hardware, the implementation is slightly more complex than our functional software description above. LacI is a tetramer that can bind allolactose at each of its four constituent parts. If one or two allolactose molecules bind on the same side of the tetramer (on the same dimer), what results is functionally what we have labeled LacI + 1allolactose. If two allolactose molecules bind on opposite sides of the tetramer, then we obtain LacI + 2allolactose.

  11. It is also true that if we want to implement a production-system virtual machine on top of an ordinary von Neumann computer, then it is an excellent idea to make the virtual machine multi-threaded. But this is an implementation detail.

References

  • Abramson J, Smirnova I, Kasho V, Gillian Verner H, Kaback R, Iwata So (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

    Article  ADS  PubMed  CAS  Google Scholar 

  • Aiba H, Fujimoto S, Ozaki N (1982) Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucleic Acids Res 10:1345–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beckwith J, Grodzicker T, Arditti R (1972) Evidence for two sites in the lac promoter region. J Mol Biol 69:155–160

    Article  PubMed  CAS  Google Scholar 

  • Beyreuther K, Adler K, Geisler N, Klemm A (1973) The amino-acid sequence of lac repressor. Proc Natl Acad Sci 70:3576–3580

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C-C, Mo F-E, Lau LF (2001) The angiogenic factor Cyr61 activates a genetic program for wound healing in human skin fibroblasts*. J Biol Chem 276:47329–47337

    Article  PubMed  CAS  Google Scholar 

  • Cherry TJ, Yang MG, Harmin DA, Tao P, Timms AE, Bauwens M, Allikmets R et al (2020) Mapping the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proc Natl Acad Sci 117:9001–9012

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Cossart P, Gicquel-Sanzey B (1982) Cloning and sequence of the crp gene of Escherichia coli K 12. Nucleic Acids Res 10:1363–1378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution. Academic Press, Cambridge

    Google Scholar 

  • Dawkins R (1986) The blind watchmaker: why the evidence of evolution reveals a universe without design. W. W. Norton & Company, New York

    Google Scholar 

  • Elf J, Li G-W, Sunney Xie X (2007) Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–1194

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Farabaugh PJ (1978) Sequence of the lacI gene. Nature 274:765–767

    Article  ADS  PubMed  CAS  Google Scholar 

  • Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, Balic A et al (2019) Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 179:1609–1622

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W, Maxam A (1973) The nucleotide sequence of the lac operator. Proc Natl Acad Sci 70:3581–3584

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert W, Müller-Hill B (1966) Isolation of the lac repressor. Proc Natl Acad Sci 56:1891–1898

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldschmidt R (1927) Physiologische theorie der vererbung. J Springer

  • Grenov A, Hezroni H, Lasman L, Hanna JH, Shulman Z (2022) YTHDF2 suppresses the plasmablast genetic program and promotes germinal center formation. Cell Rep 39(5)

  • Jacob F, Jacques M (1961b) On the regulation of gene activity. Cold Spring Harbor symposia on quantitative biology, vol 26. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 193–211

    Google Scholar 

  • Jacob F, Monod J (1961a) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3(3):318–356

    Article  PubMed  CAS  Google Scholar 

  • Jacob F, Perrin D, Sánchez C, Monod J et al (1960) The operon: a group of genes whose expression is co-ordinated by an operator. Compte Rendu De L’academie Des Sci 250:1727–1729

    CAS  Google Scholar 

  • Jacob F (2022)[1970] The logic of life: a history of heredity. Princeton University Press, Princeton

  • Marcus G (2004) The birth of the mind: how a tiny number of genes creates the complexities of human thought. Basic Books, New York

    Google Scholar 

  • McKay DB, Steitz TA (1981) Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA. Nature 290:744–749

    Article  ADS  PubMed  CAS  Google Scholar 

  • Monod J, Melvin C (1978)[1952] La biosynthèse induite des enzymes (adaptation enzymatique). In: Selected papers in molecular biology by Jacques Monod, Academic Press, pp 220–72

  • Monod J (1942) Recherches Sur La Croissance Des Cultures Bactériennes

  • Narang A (2007) Effect of DNA looping on the induction kinetics of the lac operon. J Theor Biol 247:695–712

    Article  ADS  PubMed  CAS  Google Scholar 

  • Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Hoboken

    Google Scholar 

  • Novick A, Weiner M (1957) Enzyme induction as an all-or-none phenomenon. Proc Natl Acad Sci 43:553–566

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Oehler S, Eismann ER, Krämer H, Müller-Hill B (1990) The three operators of the lac operon cooperate in repression. EMBO J 9:973–979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perlman RL, de Crombrugghe B, Pastan I (1969) Cyclic AMP regulates catabolite and transient repression in E. coli. Nature 223:810–812

    Article  ADS  PubMed  CAS  Google Scholar 

  • Phillips RL, Ernst RE, Ivanova Brunk B, Mahan MAN, Deanehan JK, Moore KA, Overton GC, Lemischka IR (2000) The genetic program of hematopoietic stem cells. Science 288:1635–1640

    Article  ADS  PubMed  CAS  Google Scholar 

  • Planer RJ (2014) Replacement of the ‘genetic program’ program. Biol Philos 29:33–53

    Article  Google Scholar 

  • Post E (1943) Formal reductions of the general combinatorial decision problem. Am J Math 65:197–215

    Article  MathSciNet  Google Scholar 

  • Reznikoff WS, Winter RB, Hurley CK (1974) The location of the repressor binding sites in the lac operon. Proc Natl Acad Sci 71:2314–2318

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Sansom R (2011) Ingenious genes: how gene regulation networks evolve to control development

  • Santillán M, Mackey MC (2008) Quantitative approaches to the study of bistability in the lac operon of Escherichia coli. J R Soc Interface 5:29–39

    Article  Google Scholar 

  • Schultz SC, Shields GC, Steitz TA (1991) Crystal structure of a CAP-DNA complex: the DNA is bent by 90. Science 253:1001–1007

    Article  ADS  PubMed  CAS  Google Scholar 

  • Seshadri T, Campisi J (1990) Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. Science 247:205–209

    Article  ADS  PubMed  CAS  Google Scholar 

  • Van Eif VWW, Sonia S, Van Duijvenboden K, Bakker M, Wakker V, De Gier-de VC, Zaffran S, Verkerk AO, Boukens BJ, Christoffels VM (2019) Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development 146:173161

    Google Scholar 

  • Zhang F, Parayath NN, Ene CI, Stephan SB, Koehne AL, Coon ME, Holland EC, Stephan MT (2019) Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun 10:3974

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported through a Nazarbayev University Faculty Development Grant (110119FD4539). My research asssistant Dariya Kassybayeva has performed valuable work. I am grateful to Ulrich Stegmann for useful conversation. An early version was presented in 2019 at the ISHPSSB biennial meeting in Oslo, as well as the University of Aberdeen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihnea Capraru.

Ethics declarations

Conflict of interest

No conflicts to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capraru, M. Making sense of ‘genetic programs’: biomolecular Post–Newell production systems. Biol Philos 39, 6 (2024). https://doi.org/10.1007/s10539-024-09943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10539-024-09943-3

Keywords

Navigation