Skip to main content
Log in

Soybean NAC gene family: sequence analysis and expression under low nitrogen supply

  • Original paper
  • Published:
Biologia Plantarum

Abstract

NAM, ATAF1/2, and CUC2 (NAC) proteins are plant-specific transcription factors playing essential roles in plant development and various abiotic stress responses. In the present study, we identified 173 full-length NAC genes in soybean, which were phylogenetically clustered into 15 groups (NACa - NACo). The soybean NAC genes (GmNACs) were non-randomly located across the 20 chromosomes, and 128 genes (86.5 %) were preferentially located in duplicated regions of chromosome arms, which implied long segmental duplication and contributed to evolution of the GmNAC gene family. Most GmNACs genes showed a distinct tissue-specific expression pattern and the redundant expression patterns of active duplicate genes suggested that GmNACs have been retained by substantial subfunctionalization during soybean evolution. Furthermore, active GmNACs genes that had undergone strong artificial selection during soybean domestication were identified based on selection analysis. After low nitrogen treatment, enhanced expression of some selected GmNAC genes were noticed in soybean shoot and root, which implied that GmNACs might play an important role in nitrogen metabolism. Here, we summarize the sequence and expression analysis of the NAC gene family in the soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AREB:

ABA responsive element binding protein

ATAF:

Arabidopsis transcription activation factor

CUC:

cup-shaped cotyledon

Mya:

milliard year ago

NAC:

NAM, ATAF1/2 and CUC2

NAM:

no apical meristem

SNP:

single nucleotide polymorphism

TF:

transcription factor

WRKY:

WRKY DNA-binding protein

References

  • Bu, Q.Y., Jiang, H.L., Li, C.B., Zhai, Q.Z., Zhang, J.Y., Wu, X.Q., Sun, J.Q., Xie, Q., Li, C.Y.: Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. — Cell Res. 18: 756–767, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Cannon, E.K., Cannon, S.B.: Chromosome visualization tool: a whole genome viewer. — Int. J. Plant Genomics 2011: 373875, 2011.

    PubMed  PubMed Central  Google Scholar 

  • Cenci, A., Guignon, V., Roux, N., Rouard, M.: Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. — Plant. mol. Biol. 85: 63–80, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, Y.J., Perera, V., Christiansen, M.W., Holme, I.B., Gregersen, P.L., Grant, M.R., Collinge, D.B., Lyngkjaer M.F.: The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew. — Plant mol. Biol. 83: 577–590, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Chuck, G.S., Brown, P.J., Meeley, R., Hake, S.: Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. — Proc. nat. Acad. Sci. USA 111: 18775–18780, 2014. De

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoon, M.J.L., Imoto, S., Nolan, J., Miyano, S.: Open source clustering software. — Bioinformatics 20: 1453–1454, 2004.

    Article  PubMed  Google Scholar 

  • Dong, Y., Yang, X., Liu, J., Wang, B.H., Liu, B.L., Wang, Y.Z.: Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. — Nat. Commun. 5: 3352, 2014.

    PubMed  Google Scholar 

  • Dong, Y.P., Fan, G.Q., Zhao, Z.L., Deng, M.J.: Compatible solute, transporter protein, transcription factor, and hormone-related gene expression provides an indicator of drought stress in Paulownia fortunei. — Funct. integr. Genomics 14: 479–491, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, J.C., Tian, Z.X., Sui, Y., Zhao, M.X., Song, Q.J., Cannon, S.B., Cregan, P., Ma, J.X.: Pericentromeric effects shape the patterns of divergence, retention, and expression of duplicated genes in the paleopolyploid soybean. — Plant Cell 24: 21–32, 2015.

    Article  Google Scholar 

  • Duval, M., Hsieh, T.F., Kim, S.Y., Thomas, T.L.: Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. — Plant mol. Biol. 50: 237–248, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ernst, H.A., Olsen, A.N., Larsen, S., Lo, Leggio L.: Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. — EMBO Rep. 5: 297–303, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan, K., Bibi, N., Gan, S., Li, F., Yuan, S., Ni, M., Wang, M., Shen, H., Wang, X.: A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. — J. exp. Bot. 15: 4669–4682, 2015.

    Article  Google Scholar 

  • Fan, K., Wang, M., Miao, Y., Ni, M., Bibi, N., Yuan, S., Li, F., Wang, X.D.: Molecular evolution and expansion analysis of the NAC transcription factor in Zea mays. — PLoS ONE 9: e111837, 2014.

    Article  Google Scholar 

  • Fang, Y.J., You, J., Xie, K.B., Xie, W.B., Xiong, L.Z.: Systematic sequence analysis and identification of tissuespecific or stress-responsive genes of NAC transcription factor family in rice. — Mol. Genet. Genomics 280: 547–563, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Gao, F., Xiong, A.S., Peng, R.H., Jin, X.F., Xu, J., Zhu, B., Chen, J.M., Yao, Q.H.: OsNAC52, a rice NAC transcription factor, potentially responds to ABA and confers drought tolerance in transgenic plants. — Plant Cell Tissue Organ Cult. 100: 255–262, 2010.

    Article  CAS  Google Scholar 

  • Goodstein, D.M., Shu, S.Q., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., Rokhsar, D.S.: Phytozome: a comparative platform for green plant genomics. -Nucl. Acids Res. 40: D1178–D1186, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Y., Qiu, L.J.: Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics. — PloS ONE 8: e76809, 2013.

    Article  Google Scholar 

  • Guo, Y.F., Gan, S.S.: AtNAP, a NAC family transcription factor, has an important role in leaf senescence. — Plant J. 46: 601–612, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Han, Q.Q., Zhang, J.H., Li, H.X., Luo, Z.D., Ziaf, K., Ouyang, B., Wang, T.T., Ye Z.B.: Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. — Mol. Biol. Rep. 39: 1713–1720, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Hao, Y.J., Wei, W., Song, Q.X., Chen, H.W., Zhang, Y.Q., Wang, F., Zou, H.F., Lei, G., Tian, A.G., Zhang, W.K., Ma, B., Zhang, J.S., Chen, S.Y.: Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. — Plant J. 68: 302–313, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Hendelman, A., Stav, R., Zemach, H., Arazi, T.: The tomato NAC transcription factor SlNAM2 is involved in flowerboundary morphogenesis. — J. exp. Bot. 64: 5497–5507, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, R.B., Qi, G.A., Kong, Y.Z., Kong, D.J., Gao, Q.A., Zhou, G.K.: Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. — BMC Plant Biol. 10: 145, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang, H., Wang, Y., Wang, S.L., Wu, X., Yang, K., Niu, Y.J., Dai, S.L.: Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium. - Plant Sci. 193: 18–27, 2012.

    Article  PubMed  Google Scholar 

  • Hurst, L.D.: The Ka/Ks ratio: diagnosing the form of sequence evolution. — Trends Genet. 18: 486–487, 2002.

    Article  PubMed  Google Scholar 

  • Hyten, D.L., Song, Q.J., Zhu, Y.L., Choi, I.Y., Nelson, R.L., Costa, J.M., Specht, J.E., Shoemaker, R.C., Cregan, P.B.: Impacts of genetic bottlenecks on soybean genome diversity. — Proc. nat. Acad. Sci. USA 103: 16666–16671, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen, M.K., Hagedorn, P.H., De Torres-Zabala, M., Grant, M.R., Rung, J.H., Collinge, D.B., Lyngkjaer, M.F.: Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. — Plant J. 56: 867–880, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, T., Fitzpatrick, M.R., Chen, S.Y., Liu, Y., Zhang, H.X., Endacott, R.Z., Gaudiello, E.C., Stacey, G., Nguyen, H.T., Xu, D.: Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding. — Nucl. Acids Res. 42: D1245–D1252, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Kou, X.H., Watkins, C.B., Gan, S.S.: Arabidopsis AtNAP regulates fruit senescence. — J. exp. Bot. 63: 6139–6147, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam, H.M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.L., Li, M.W., He, W., Qin, N., Wang, B., Li, J., Jian, M., Wang, J., Shao, G., Sun, S.S., Zhang, G.: Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. — Natur. Genet. 42: 1053–1059, 2010.

    Article  CAS  Google Scholar 

  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. — Bioinformatics 23: 2947–2948, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Lavin, M., Herendeen, P.S., Wojciechowski, M.F.: Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. — Syst. Biol. 54: 575–594, 2005.

    Article  PubMed  Google Scholar 

  • Le, DT, Nishiyama, R., Watanabe, Y., Mochida, K., Yamaguchi-Shinozaki, K., Shinozaki, K., Tran, L.S.P.: Genome-wide survey and expression analysis of the plantspecific NAC transcription factor family in soybean during development and dehydration stress. — DNA Res. 18: 263–276, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., De Peer, Y.V., Rouzé, P., Rombauts, S.: PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. — Nucl. Acids Res. 30: 325–327, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X.L., Yang, X., Hu, Y.X., Yu, X.D., Li, Q.L.: A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance. — Plant Cell Rep. 33: 767–778, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y.H., Zhao, S.C., Ma, J.X., Li, D., Yan, L., Li, J., Qi, X.T., Guo, X.S., Zhang, L., He, W.M., Chang, R.Z., Liang, Q.S., Guo, Y., Ye, C., Wang, X.B., Tao, Y., Guan, R.X., Wang, J.Y., Liu, Y.L., Jin, L.G., Zhang, X.Q., Liu, Z.X., Zhang, L.J., Chen, J., Wang, K.J., Nielsen, R., Li, R.Q., Chen, P.Y., Li, W.B., Reif, J.C., Purugganan, M., Wang, J., Zhang, M.C., Wang, J., Qiu, L.J.: Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. — BMC Genomics 14: 579, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  • Librado, P., Rozas, J.: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. — Bioinformatics 25: 1451–1452, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Liu, J.F., Zhang, Y., Lei, X.Y., Zhang, Z.M.: Natural selection of protein structural and functional properties: a single nucleotide polymorphism perspective. — Genome Biol. 4: R69, 2008.

  • Liu, T.K., Song, X.M., Duan, W.K., Huang, Z.N., Liu, G.F., Li, Y., Hou, X.L.: Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in chinese cabbage. — Plant mol. Biol. Rep. 32: 1041–1056, 2014.

    Article  Google Scholar 

  • Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. — Methods 25: 402–408. 2001.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, S., Stuhl, L., Fichelson, S., Dubart-Kupperschmitt, A., St Arnaud R., Galindo J.R., Murati A., Berda N., Dubreuil P., Gomez S.: NACA is a positive regulator of human erythroid-cell differentiation. — J. cell. Sci. 118: 1595–1605, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M., Conery, J.S.: The evolutionary fate and consequences of duplicate genes. — Science 290: 1151–1155, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuda, N., Ohme-Takagi, M.: NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. — Plant J. 56: 768–778, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Movahedi, A., Zhang, J.X., Gao, P.H., Yang, Y., Wang, L.K., Yin, T.M., Kadkhodaei, S., Ebrahimi, M., Qiang, Z.G.: Expression of the chickpea CarNAC3 gene enhances salinity and drought tolerance in transgenic poplars. — Plant Cell Tissue Organ Cult. 120: 141–154, 2015.

    Article  CAS  Google Scholar 

  • Nuruzzaman, M., Manimekalai, R., Sharoni, A.M., Satoh, K., Kondoh, H., Ooka, H., Kikuchi, S. Genome-wide analysis of NAC transcription factor family in rice. - Gene 465: 30–44, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, A.N., Ernst, H.A., Leggio, L.L., Skriver, K.: NAC transcription factors: structurally distinct, functionally diverse. — Trends Plant Sci. 10: 79–87, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., Kikuchi, S.: Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. — DNA Res. 10: 239–247, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro, G.L., Marques, C.S., Costa, M.D.B.L., Reis, P.A.B., Alves, M.S., Carvalho, C.M., Fietto, L.G., Fontes, E.P.B.: Complete inventory of soybean NAC transcription factors: sequence conservation and expression analysis uncover their distinct roles in stress response. — Gene 444: 10–23, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Puranik, S., Sahu, P.P., Mandal, S.N., Venkata Suresh, B., Parida, S.K., Prasad, M.: Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). — PloS ONE 8: e64594, 2013.

    Article  Google Scholar 

  • Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., Lopez, R.: InterProScan: protein domains identifier. — Nucl. Acids Res 33: W116–W120, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuraba, Y., Park, S. Y., Paek, N. C.: The divergent roles of STAYGREEN (SGR) homologs in chlorophyll degradation. — Mol. Cells 38: 390–395, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salamov, A.A., Solovyev V.V.: Ab initio gene finding in Drosophila genomic DNA. — Genome Res. 10: 516–522, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvagiotti, F., Cassman, K.G., Specht, J.E., Walters, D.T., Weiss, A., Doberman, A.: Nitrogen uptake, fixation, and response to fertilizer N in soybeans: a review. — Field Crops Res. 108: 1–13, 2008.

    Article  Google Scholar 

  • Satheesh, V., Jagannadham, P.T., Chidambaranathan, P., Jain, P.K., Srinivasan, R.: NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cisregulatory element analysis in pigeonpea (Cajanus cajan (L.) Millsp.). — Mol. Biol. Rep. 41: 7763–7773, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Schlueter, J.A., Lin, J.Y., Schlueter, S.D., Vasylenko-Sanders, I.F., Deshpande, S., Yi, J., O'Bleness, M., Roe, B.A., Nelson, R.T., Scheffler, B.E., Jackson, S.A., Shoemaker, R.C.: Gene duplication and paleopolyploidy in soybean and the implications for whole genome sequencing. — BMC Genomics 8: 330, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., Xu, D., Hellsten, U., May, G.D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M.K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.C., Shinozaki, K., Nguyen, H.T., Wing, R.A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R.C., Jackson, S.A.: Genome sequence of the palaeopolyploid soybean. — Nature 463: 178–183, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Shang, H., Li, W., Zou, C., Yuan, Y.: Analyses of the NAC transcription factor gene family in Gossypium raimondii Ulbr.: chromosomal location, structure, phylogeny, and expression patterns. — J. integr. Plant Biol. 55: 663–676, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. — Mol. Biol. Evol. 28: 2731–2739, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taoka, K., Yanagimoto, Y., Daimon, Y., Hibara, K., Aida, M., Tasaka, M.: The NAC domain mediates functional specificity of Cup-Shaped Cotyledon proteins. — Plant J. 40: 462–473, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G.: The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. — Nucl. Acids Res. 25: 4876–4882, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, Z.X., Wang, X.B., Lee, R., Li, Y.H., Specht, J.E., Nelson, R.L., McClean, P.E., Qiu, L.J., Ma, J.X.: Artificial selection for determinate growth habit in soybean. — Proc. nat. Acad. Sci. USA 107: 8563–8568, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran, L.S., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama K., Yamaguchi-Shinozaki K.: Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive ciselement in the early responsive to dehydration stress 1 promoter. — Plant Cell 16: 2481–2498, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker, M.L., Whitelaw, C.A., Lyssenko, N.N., Nath, P.: Functional analysis of regulatory elements in the gene promoter for an abscission-specific cellulase from bean and isolation, expression, and binding affinity of three TGAtype basic leucine zipper transcription factors. — Plant Physiol. 130: 1487–1496, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udvardi, M.K., Kakar, K., Wandrey, M., Montanari, O., Murray, J., Andriankaja, A., Zhang, J.Y., Benedito, V., Hofer, J.M., Chueng, F., Town, C.D.: Legume transcription factors: global regulators of plant development and response to the environment. — Plant Physiol. 144: 538–549, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, N., Zheng, Y., Xin, H., Fang, L., Li, S.: Comprehensive analysis of NAC domain transcription factor gene family in Vitis vinifera. — Plant Cell. Rep. 32: 61–75, 2013.

    Article  PubMed  Google Scholar 

  • Wang, X.B., Zhang, H.W., Sun, G.L., Jin, Y., Qiu, L.J.: Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean. — Gene 543: 237–243, 2014a.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X.B., Zhang, H.W., Gao, Y.L., Sun, G.L., Zhang, W.M., Qiu, L.J.: A comprehensive analysis of the Cupin gene family in soybean (Glycine max). — PloS ONE 9: e110092, 2014b.

    Article  Google Scholar 

  • Wang, F., Chen, H.W., Li, Q.T., Wei, W., Li, W., Zhang, W.K., Ma, B., Bi, Y.D., Lai, Y.C., Liu, X.L., Man, W.Q., Zhang, J.S., Chen, S.Y.: GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. — Plant J. 83: 224–236, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Wilkins, O., Nahal, H., Foong, J., Provart, N.J., Campbell, M.M.: Expansion and diversification of the Populus R2R3-MYB family of transcription factors. — Plant Physiol. 149: 981–993, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Z., Xu, X., Xiong, W., Wu, P., Chen, Y., Li, M., Wu, G., Jiang, H.: Genome-wide analysis of the NAC gene family in physic nut (Jatropha curcas L.). — PloS ONE 10: e0131890, 2015.

    Google Scholar 

  • Xie, Q., Frugis, G., Colgan, D., Chua, N.H.: Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. — Genes Dev. 14: 3024–3036, 2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, G.X., Guo, C.C., Shan, H.Y., Kong, H.Z.: Divergence of duplicate genes in exon-intron structure. — Proc. nat. Acad. Sci. USA 109: 1187–1192, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Z.K., Jiang, Y., Wang, Z., Gou, Z.H., Lyu, J., Li, W.Y., Yu, Y.J., Shu, L.P., Zhao, Y.J., Ma, Y.M., Fang, C., Shen, Y.T., Liu, T.F., Li, C.C., Li, Q., Wu, M., Wang, M., Wu, Y.S., Dong, Y., Wan, W.T., Wang, X., Ding, Z.L., Gao, Y.D., Xiang, H., Zhu, B.G., Lee, S.H., Wang, W., Tian, Z.X.: Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. — Nat. Biotechnol. 33: 408–414, 2015.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Wang.

Additional information

Acknowledgments: This study was supported by grants from the Natural Science for Key Project of Anhui Education Committee (No. KJ2016A843), the Cultivating Academic Backbone Fundation of Anhui Agricultural University (No. 2014XKPY-04), the Introduced Leading Talent Research Team for Universities in Anhui Province and the Special Fund for Agro-scientific Research in the Public Interest (No. 201503121-02). We wish to thank the anonymous reviewers for their helpful comments on this manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, D., Jiang, J. et al. Soybean NAC gene family: sequence analysis and expression under low nitrogen supply. Biol Plant 61, 473–482 (2017). https://doi.org/10.1007/s10535-016-0693-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-016-0693-4

Additional key words

Navigation