Skip to main content
Log in

Differential gene expression in two contrasting wheat cultivars under cadmium stress

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The present study investigated differences in cadmium resistance of two wheat (Triticum aestivum L.) cultivars. The cvs. RAJ 4161 (Cd resistant) and PBW 343 (Cd sensitive) were treated with 200 mg(Cd) kg−1(soil) for 3, 5, 7, and 10 d. The effect of the Cd stress was estimated by measuring growth parameters, accumulation of cadmium, sulphur, and glutathione (GSH), and by expression of some defence genes [phytochelatin synthase (PCS), glutathione reductase (GR), and ascorbate peroxidase (APX)]. The Cd treatment resulted in a significant reduction in plant growth and in an increase in the accumulation of S and GSH. Further, the expressions of PCS, GR, and APX were also mostly enhanced. The PCS was upregulated significantly in roots of RAJ 4161 (0.6-fold) and downregulated (0.9-fold) in PBW 343 on day 3 of the Cd treatment. In RAJ 4161, the expressions of APX and GR recorded a maximum increase of 2.1- and 2.4-fold in roots and leaves, respectively, after 10 d of the stress. The results show that a different ability of RAJ 4161 and PBW 343 to modulate mRNA expression after the Cd treatment was related to their Cd tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA-GSH:

ascorbate-glutathione

Chl:

chlorophyll

d.m.:

dry mass

f.m.:

fresh mass

GR:

glutathione reductase

PC:

phytochelatin

PCS:

phytochelatin synthase

RT-qPCR:

reverse transcription quantitative polymerase chain reaction

References

  • Anderson, M.E.: Determination of glutathione and glutathione disulfide in biological samples. — Methods Enzymol. 113: 548–555, 1985.

    Article  CAS  PubMed  Google Scholar 

  • Bashir, H., Ahmad, J., Bagheri, R., Nauman, M., Qureshi, M.I.: Limited sulfur resource forces Arabidopsis thaliana to shift towards non-sulfur tolerance under cadmium stress. — Environ. exp. Bot. 94: 19–32, 2013.

    Article  CAS  Google Scholar 

  • Bhargava, B.S., Raghupathi, H.B.: Analysis of plant material for macro and micro nutrients. — In Tandon, H.L.S. (ed.): Methods of Analysis of Soils, Plant, Waters and Fertilizers. Pp. 49–82. FDCO, New Delhi 1993.

    Google Scholar 

  • Castiglione, S., Franchin, C., Fossati, T., Lingua, G., Torrigiani, P., Biondi, S.: High zinc concentrations reduce rooting capacity and alter metallothioneins gene expression in white poplar (Populus alba L. cv. Villafranca). — Chemosphere 67: 1117–1126, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Dong, J., Wang, F., Wu, F., Zhang, G., Li, G., Zheng, C., Jingxing, C., Wei, K.: Identification of barley genotypes with low grain Cd accumulation and its interaction with four microelements. — Chemosphere 67: 2082–2088, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Clemens, S., Persoh, D.: Multi-tasking phytochelatin synthases. — Plant Sci. 177: 266–271, 2009.

    Article  CAS  Google Scholar 

  • Cobbett, C., Goldsbrough, P.: Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. — Annu. Rev. Plant Biol. 53: 159–182, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Cobbett, C.S.: Phytochelatins and their roles in heavy metal detoxification. — Plant Physiol. 123: 825–832, 2000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira, R.R., Fornazier, R.F., Vitória, A.P., Lea, P.J., Azevedo, R.A.: Changes in antioxidant enzyme activities in soybean under cadmium stress. — J. Plant Nutr. 25: 327–342, 2002.

    Article  CAS  Google Scholar 

  • Gasic, K., Korban, S.S.: Transgenic Indian mustard (Brassica juncea) plants expressing an Arabidopsis phytochelatin synthase (AtPCS1) exhibit enhanced As and Cd tolerance. — Plant mol. Biol. 64: 361–369, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Gaudet, M., Pietrini, F., Beritognolo, I., Iori, V., Zacchini, M., Massacci, A., Mugnozza, G.S., Sabatti, M.: Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. — Tree Physiol. 31: 1309–1318, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S.S., Khan, N.A., Tuteja, N.: Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). — Plant Sci. 182: 112–120, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S.S., Khan, N.A., Tuteja, N.: Differential cadmium stress tolerance in five indian mustard (Brassica juncea L.) cultivars. An evaluation of the role of antioxidant machinery. — Plant Signal. Behav. 6: 293–300, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill, S.S, Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Gratão, P.L., Monteiro, C.C., Carvalho, R.F., Tezotto, T., Piotto, F.A., Peres, L.E.P., Azevedo, R.A.: Biochemical dissection of diageotropica and never ripe tomato mutants to Cd-stressful conditions. — Plant Physiol. Biochem. 56: 79–96, 2012.

    Article  PubMed  Google Scholar 

  • He, Z., Li, J., Zhang, H., Ma. M.: Different effects of calcium and lanthanum on the expression of phytochelatin synthase gene and cadmium absorption in Lactuca sativa. — Plant Sci. 168: 309–318, 2005.

    Article  CAS  Google Scholar 

  • Herbette, S., Taconnat, L., Hugouvieux, V., Piette, L., Magniette, M.L.M., Cuine, S., et al.: Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. — Biochimie 88: 1751–1765, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Hirata, K., Tsuji, N., Miyamoto, K.: Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. — J. Biosci. Bioeng. 100: 593–599, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. — Calif. agr. exp. Station Circular 347: 1–32, 1950.

    Google Scholar 

  • Issac, R.A., Kerber, J.D.: Atomic absorption and flame photometry: techniques and uses in soil, plant and water analysis. — In: Walsh, L.M. (ed.): Instrumental Methods for Analysis of Soils and Plant Tissue. Pp. 17–37. Soil Science Society of America, Madison 1971.

    Google Scholar 

  • Jozefczak, M., Remans, T., Vangronsveld, J., Cuypers, A.: Glutathione is a key player in metal-induced oxidative stress defences. — Int. J. mol. Sci. 13: 3145–3175, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim, Y.Y., Kim, D.Y., Shim, D., Song, W.Y., Lee, J., Schroeder, J.I., Kim, S., Moran, N., Lee, Y.: Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers’ yeast. — J. biol. Chem. 283: 15893–15902, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, A.M., Yu, B.Y., Chen, F.H., Gan, H.Y., Yuan, J.G., Qiu, R., Huang, J.C., Yang, Z.Y., Z.F. Xu.: Characterization of the Sesbania rostrata phytochelatin synthase gene: Alternative splicing and function of four isoforms. — Int. J. mol. Sci. 10: 3269–3282, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luo, H., Li, H., Zhang, X., Fu, J.: Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under Cd stress. — Ecotoxicology 20: 770–778, 2011.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin, M.J., Singh, B.R.: Cadmium in soil and plants: a global perspective. — In: McLaughlin, M.J., Singh, B.R. (ed.): Cadmium in Soils and Plants. Vol. 85. Pp. 1–9. Kluwer Academic Publishers, Dordrecht 1999.

    Chapter  Google Scholar 

  • Mendoza-Cózatl, D.G., Butko, E., Springer, F., Torpey, J.W., Komives, E.A., Kehr, J., Schroeder, J.I.: Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. — Plant J. 54: 249–259, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R.D., Govindarajan, R., Kuriakose, S.V., Prasad, M.N.V.: Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. — Plant Physiol. Biochem. 44: 25–37, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria, P., Rana, N.K., Yadav, S.K.: Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. — Environ. Toxicol. 22: 368–374, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Morel, F.M.M.: The co-evolution of phytoplankton and trace element cycles in the oceans. — Geobiology 6: 318–324, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nicot, N., Hausman, J.F., Hoffmann, L., Eves, D.: Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. — J. exp. Bot. 56: 2907–2914, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, I., Nakanishi, H., Mori, S., Nishizawa, N.K.: Time course analysis of gene regulation under cadmium stress in rice. — Plant Soil 325: 97–108, 2009.

    Article  CAS  Google Scholar 

  • Pál, M., Horváth, E., Janda, T., Páldi, E., Szalai, G.: Physiological changes and defense mechanisms induced by cadmium stress in maize. — J. Plant Nutr. Soil Sci. 169: 239–246, 2006.

    Article  Google Scholar 

  • Parmar, P., Kumari, N., Sharma, V.: Structural and functional alterations in photosynthetic apparatus of plants under cadmium stress. — Bot. Stud. 54: 45–50, 2013.

    Article  Google Scholar 

  • Pereira, G.J.G., Molina, S.M.G., Lea, P. J., Azevedo, R.A.: Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. — Plant Soil 239: 123–132, 2002.

    Article  CAS  Google Scholar 

  • Pomponi, M., Censi, V., Girolamo, V.D., Paolis, D.A., Di Toppi, L.S., Aromolo, R., Costantino, P., Cardarelli, M.: Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. — Planta 223: 180–190, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Porra, R.J., Thompson, W.A., Kriedemann, P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of concentration of chlorophyll standards by atomic absorption spectroscopy. — Biochim. biophys. Acta 975: 384–394, 1989.

    Article  CAS  Google Scholar 

  • Rivera-Becerril, F., Calantzis, C., Turnau, K., Caussanel, J.P., Belismov, A.A., Gianinazzi, S., Strasser, J.R., Gianinazzi-Pearson, V.: Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. — J. exp. Bot. 53: 1177–1185, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Seth, C.S., Remans, T., Keunen, E., Jozefczak, M., Gielen, H., Opdenakker, K., Weyens, N., Vangronsveld, J., Cupers, A.: Phytoextraction of toxic metals: a central role for glutathione. — Plant Cell Environ. 35: 334–346, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, N.K.: Suitable varieties and agro-chemicals for yield optimization of wheat in arid Rajasthan. — J. Progr. Agr. 4: 124–127, 2013.

    CAS  Google Scholar 

  • Skórzyńska-Polit, E., Drążkiewicz, M., Krupa, Z.: Lipid peroxidation and antioxidative response in Arabidopsis thaliana exposed to cadmium and copper. — Acta Physiol. Plant. 32: 169–175, 2010.

    Article  Google Scholar 

  • Szarka, A., Tomasskovics, B., Bánhegyi, G.: The ascorbateglutathione- α-tocopherol triad in abiotic stress response. — Int. J. mol. Sci. 13: 4458–4483, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomaszewska, B., Tukendorf, A., Baralkiewicz, D.: The synthesis of phytochelatins in lupin roots treated with lead ions. — Sci. Legumes 3: 206–217, 1996.

    CAS  Google Scholar 

  • Valentovičová, K., Halušková, L., Huttová, J., Mistrík, I., Tamás, L.: Effect of cadmium on diaphorase activity and nitric oxide production in barley root tips. — J. Plant Physiol. 167: 10–14, 2010.

    Article  PubMed  Google Scholar 

  • Xue, X.C., Gao, H.Y., Zhang, L.T.: Effects of cadmium on growth, photosynthetic rate and chlorophyll content in leaves of soybean seedlings. — Biol. Plant. 57: 587–590, 2013.

    Article  CAS  Google Scholar 

  • Yadav, S.K.: Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. — S. Afr. J. Bot. 76: 167–179, 2010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sharma.

Additional information

Acknowledgements: The financial support provided by the Department of Science and Technology (DST), New Delhi, for the project ‘Banasthali Centre for Education and Research in Basic Sciences’ under the CURIE (Consolidation of University Research for Innovation and Excellence in Women Universities) program is gratefully acknowledged. Pooja Parmar acknowledges the financial support by the Department of Biotechnology (DBT), New Delhi, for providing a senior research fellowship.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Parmar, P. & Sharma, V. Differential gene expression in two contrasting wheat cultivars under cadmium stress. Biol Plant 59, 701–707 (2015). https://doi.org/10.1007/s10535-015-0550-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0550-x

Additional keywords

Navigation