Skip to main content
Log in

Effects of acclimation and pretreatment with abscisic acid or salicylic acid on tolerance of Trigonobalanus doichangensis to extreme temperatures

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The effects of acclimation to cold (4 °C) and heat (36/38/40 °C) on corresponding freezing and heat tolerances of one-year-old Trigonobalanus doichangensis seedlings were studied. In addition, the effects of abscisic acid (ABA) and salicylic acid (SA) pretreatments on the tolerance of this species to temperature extremes were tested. The results show that the content of soluble sugars increased with the duration of acclimation to cold (4 °C), and the relative electrical conductivity and malondialdehyde content increased significantly after 7 d; however, the content of proline did not vary significantly. After acclimation to cold for 3 and 7 d, the semilethal low temperature (LLT50) was 0.8 and 1.1 °C lower, respectively, compared with that of the control. The maximum quantum yield of photosystem II (measured as variable to maximum fluorescence ratio, Fv/Fm) decreased significantly after freezing treatments (−4 to −8 °C), however, less when the plants were pretreated with 1–100 mg dm−3 ABA. Acclimation to heat did not increase the semilethal high temperature (LHT50). A low concentration (1 mg dm−3) of SA increased LHT50, but medium and high concentrations (10 and 100 mg dm−3) decreased it. Fv/Fm decreased significantly after a heat shock (45–54 °C). The pretreatment with 1–50 mg dm−3 SA ameliorated a subsequent heat (48 °C) stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

EC:

electrical conductivity

HSP:

heat shock protein

LHT50 :

semilethal high temperature

LLT50 :

semilethal low temperature

LT50 :

semilethal temperature

PS II:

photosystem II

REC:

relative electrical conductivity

ROS:

reactive oxygen species

SA:

salicylic acid

References

  • Aspinall, D., Paleg, L.G.: Proline accumulation: physiological aspects. — In Paleg, L.G., Aspinall, D. (ed.): The Physiology and Biochemistry of Drought Resistance in Plants. Pp. 205–241. Academic Press, Sydney 1981.

    Google Scholar 

  • Bohnert, H.J., Sheveleva, E.: Plant stress adaptations — making metabolism move. — Curr. Opin. Plant. Biol. 1: 267–274, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Crepet, W.L., Nixon, K.C.: Earliest megafossil evidence of Fagaceae: phylogenetic and biogeographic implications. — Amer. J. Bot. 76: 842–855, 1989.

    Article  Google Scholar 

  • Dat, J.F., Lopez-Delgado, H., Foyer, C.H., Scott, I.M.: Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. — J. Plant Physiol. 156: 659–665, 2000.

    Article  CAS  Google Scholar 

  • Farhad, M.S., Babak, A.M., Reza, Z.M., Mir Hassan, R.S., Afshin, T.: Response of proline, soluble sugars, photosynthetic pigments and antioxidant enzymes in potato (Solanum tuberosum L.) to different irrigation regimes in greenhouse condition. — Aust. J. Crop Sci. 5: 55–60, 2011.

    CAS  Google Scholar 

  • Forman, L.: Trigonobalanus, a new genus of Fagaceae, with notes on the classification of the family. — Kew Bull. 17: 381–396, 1964.

    Article  Google Scholar 

  • Fracheboud, Y., Haldimann, P., Leipner, J., Stamp, P.: Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). — J. exp. Bot. 50: 1533–1540, 1999.

    Article  CAS  Google Scholar 

  • Gusta, L.V., Trischuk, R., Weiser, C.J.: Plant cold acclimation: the role of abscisic acid. — J. Plant Growth Regul. 24: 308–318, 2005.

    Article  CAS  Google Scholar 

  • Guy, C.L.: Cold acclimation and freezing stress tolerance: role of protein metabolism. — Annu. Rev. Plant Physiol. Plant mol. Biol. 41: 187–223, 1990.

    Article  CAS  Google Scholar 

  • Heino, P., Palva, E.T.: Signal transduction in plant cold acclimation. — In Hirt, H., Shinozaki K. (ed.): Plant Responses to Abiotic Stress. Pp. 151–186. Springer-Verlag, Berlin — Heidelberg 2003.

    Chapter  Google Scholar 

  • Hsieh, T.H., Lee, J.T., Yang, P.T., Chiu, L.H., Charng, Y.Y., Wang, Y.C., Chan, M.T.: Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. — Plant Physiol. 129:1086–1094, 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horváth, E., Pál, M., Szalai, G., Páldi, E., Janda, T.: Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. — Biol. Plant. 51: 480–487, 2007a.

    Article  Google Scholar 

  • Horváth, E., Szalai, G., Janda, T.: Induction of abiotic stress tolerance by salicylic acid signaling. — J. Plant Growth Regul. 26: 290–300, 2007b.

    Article  Google Scholar 

  • Iba, K.: Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. — Annu. Rev. Plant Biol. 53: 225–245, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan, F., Kopka, J., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y., Guy, C.L.: Exploring the temperature-stress metabolome of Arabidopsis. — Plant Physiol. 136: 4159–4168, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, R., Guy, C.L.: Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. — Plant J. 50: 967–981, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Kayihan, C., Eyidogan, F., Afsar, N., Oktem, H. A., Yucel M.: Cu/Zn superoxide dismutase activity and respective gene expression during cold acclimation and freezing stress in barley cultivars. — Biol. Plant. 56: 693–698, 2012.

    Article  CAS  Google Scholar 

  • Koster, K.L., Lynch, D.V.: Solute accumulation and compartmentation during the cold acclimation of Puma rye. — Plant Physiol. 98: 108–113, 1992.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Levitt, J.: Response of Plants to Environmental Stresses. Vol. 1: Chilling, Freezing and High Temperature Stresses. — Academic Press, New York 1980.

    Google Scholar 

  • Marmiroli, N., Restivo, F.M., Smith, C.J., Di Cola, G., Maestri, E., Tassi, F.: Induction of heat shock response and acquisition of thermotolerance in callus cultures of Gerbera jamesonii. — In Vitro cell. dev. Biol. Plant 33: 49–55, 1997.

    Article  CAS  Google Scholar 

  • Minami, A., Nagao, M., Ikegami, K., Koshiba, T., Arakawa, K., Fujikawa, S., Takezawa, D.: Cold acclimation in bryophytes: low-temperature-induced freezing tolerance in Physcomitrella patens is associated with increases in expression levels of stress-related genes but not with increase in level of endogenous abscisic acid. — Planta 220: 414–423, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Mutlu, S., Karadağoğlu, Ö., Atici, Ö., Nalbantoğlu, B.: Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. — Biol. Plant. 57: 507–513, 2013.

    Article  CAS  Google Scholar 

  • Naliwajski, M.R., Skłodowska, M.: The oxidative stress and antioxidant systems in cucumber cells during acclimation to salinity. — Biol. Plant. 58: 47–54, 2014.

    Article  CAS  Google Scholar 

  • Nautiyal, P.C., Rajgopal, K., Zala, P.V., Pujari, D.S., Basu, M., Dhadhal, B.A., Nandre, B.M.: Evaluation of wild Arachis species for abiotic stress tolerance: 1. Thermal stress and leaf water relations. — Euphytica 159: 43–57, 2008.

    Article  Google Scholar 

  • Nixon, K.C., Crepet, W.L.: Trigonobalanus (Fagaceae): taxonomic status and phylogenetic relationships. — Amer. J. Bot. 76: 828–841, 1989.

    Article  Google Scholar 

  • Roy, R., Mazumder, P.B., Sharma, G.D.: Proline, catalase and root traits as indices of drought resistance in bold grained rice (Oryza sativa) genotypes. — Afr. J. Biotechnol. 8: 6521–6528, 2009.

    CAS  Google Scholar 

  • Ruelland, E., Vaultier, M.N., Zachowski, A., Hurry, V.: Cold signaling and cold acclimation in plants. — Adv. Bot. Res. 49: 35–150, 2009.

    Article  CAS  Google Scholar 

  • Sakai, A., Larcher, W. ??: Frost Survival of Plants: Responses and Adaptation to Freezing Stress. — Springer-Verlag, New York 1987.

    Book  Google Scholar 

  • Samaras, Y., Bressan, R.A., Csonka, L.N., García-Ríos, M.G., Paino, D., Urzo, M., Rhodes, D.: Proline accumulation during drought and salinity. — In Smirnoff, N. (ed.): Environment and Plant Metabolism. Pp. 161–187. Bios Scientific Publishers, Oxford 1995.

    Google Scholar 

  • Shi, Q., Bao, Z., Zhu, Z., Ying, Q., Qian, Q.: Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L.. — Plant Growth Regul. 48: 127–135, 2006.

    Article  CAS  Google Scholar 

  • Spoel, S.H., Dong, X.: Making sense of hormone crosstalk during plant immune responses. — Cell Host Microbe 3: 348–351, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Sridevi, V., Satyanarayana, N.V., Madhavarao, K.V.: Induction of heat shock proteins and acquisition of thermotolerance in germinating pigeonpea seeds. — Biol. Plant. 42: 589–597, 1999.

    Article  Google Scholar 

  • Theocharis, A., Clément, C., Ait Barka, E.: Physiological and molecular changes in plants grown at low temperatures. — Planta 235: 1091–1105, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R.: Heat tolerance in plants: an overview. — Environ. exp. Bot. 61: 199–223, 2007.

    Article  Google Scholar 

  • Wang, X.K. (ed.): Principles and Techniques of Plant Physiological Biochemical Experiment. — Higher Education Press, Beijing 2006.

    Google Scholar 

  • Webb, M.S., Uemura, M., Steponkus, P.L.: A comparison of freezing injury in oat and rye: two cereals at the extremes of freezing tolerance. — Plant Physiol. 104: 467–478, 1994.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Welling, A., Palva, E.T.: Molecular control of cold acclimation in trees. — Physiol. Plant. 127: 167–181, 2006.

    Article  CAS  Google Scholar 

  • Xia, Y.Y., Ye, H., Ma, J.L., Jiang, Z.P., He, X.Y.: The study on semi-lethal high temperature and heat tolerance of four Camellia oleifera Abel clones. — Chin. Agr. Sci. Bull. 28: 58–61, 2012.

    Google Scholar 

  • Zhang, J., Wu, X., Niu, R., Liu, Y., Liu, N., Xu, W., Wang, Y.: Cold-resistence evaluation in 25 wild grape species. — Vitis 51: 153–160, 2012.

    Google Scholar 

  • Zhou, Z.K.: Origin, phylogeny and dispersal of Quercus from China. — Acta bot. yunnanica 14: 227–236, 1992.

    Google Scholar 

  • Zhu, J.H., Dong, C.H., Zhu, J.K.: Interplay between coldresponsive gene regulation, metabolism and RNA processing during plant cold acclimation. — Curr. Opin. Plant Biol. 10: 290–295, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Q. Li.

Additional information

Acknowledgements: This research was funded by the National Natural Science Foundation of China (#31300251)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y.L., Li, W.Q. & Sun, W.B. Effects of acclimation and pretreatment with abscisic acid or salicylic acid on tolerance of Trigonobalanus doichangensis to extreme temperatures. Biol Plant 59, 382–388 (2015). https://doi.org/10.1007/s10535-015-0488-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0488-z

Additional key words

Navigation