Skip to main content
Log in

Suppression of SlNAC1 reduces heat resistance in tomato plants

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

NAC (NAM, ATAF1,2, and CUC2) transcription factors play an important role in the responses of plants to various environmental stresses. To investigate the function of SlNAC1, which was found to be a member of the ATAF subfamily in tomato (Solanum lycopersicum L.) plants under heat stress conditions, transgenic tomato plants were generated using an antisense technology. After a treatment at 40 °C for 48 h, in comparison with wild-type (WT) plants, the transgenic plants were severely wilted and exhibited a lower net photosynthetic rate and a maximal photochemical efficiency of photosystem II. Moreover, the transgenic plants displayed a higher ion leakage and malondialdehyde content and a lower proline content. The content of reactive oxygen species (superoxide anion radicals and hydrogen peroxide) were higher, and activities of ascorbate peroxidase and superoxide dismutase lower in the transgenic plants than in the WT plants. The transgenic plants also exhibited a lower accumulation of the transcripts of some heat shock protein genes (Hsp70, Hsp90, sHsp17.4, and sHsp17.6). All of these results suggest that the suppression of SlNAC1 could obviously reduce heat resistance in the tomato plants, and this indicates that SlNAC1 played an important role in the thermal tolerance of the tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

Fv/Fm :

variable to maximum chlorophyll fluorescence ratio (the maximal photochemical efficiency of PS II)

HSGs :

heat shock genes

HSPs:

heat shock proteins

H2O2 :

hydrogen peroxide

MDA:

malondialdehyde

O2 ·− :

superoxide anion radical

P5CS:

pyrroline-5-carboxylate synthase

PFD:

photon flux density

PN :

net photosynthetic rate

PS:

photosystem

REC:

relative electric conductance

ROS:

reactive oxygen species

sHSPs:

small heat shock proteins

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

WT:

wild type

References

  • Abdul-Baki, A.A.: Tolerance of tomato cultivars and selected germ plasm to heat stress. — J. amer. Soc. hort. Sci. 116: 1113–1116, 1991.

    Google Scholar 

  • Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., Tasaka, M.: Genes involved in organ separation in Arabidopsis: analysis of the cup-shaped cotyledon mutant. — Plant Cell 9: 841–857, 1997.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Almeselmani, M., Deshmukh, P.S., Sairam, R.K.: High temperature stress tolerance in wheat genotypes: role of antioxidant defence enzymes. — Acta agron. hung. 57: 1–14, 2009.

    Article  CAS  Google Scholar 

  • Baniwal, S.K., Bharti, K., Chan, K.Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S.K., Nover, L., Port, M., Scharf, K.D.: Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. — J. Biosci. 29: 471–487, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Bokszczanin, K.L. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. — Front. Plant Sci. 4: 1–20, 2013.

    Article  Google Scholar 

  • Boston, R.S., Viitanen, P.V., Vierling, E.: Molecular chaperones and protein folding in plants. — Plant mol. Biol. 32: 191–222, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Camejo, D., Jiménez, A., Alarcón, J.J., Torres, W., Gómez, J.M., Sevilla, F.: Changes in photosynthetic parameters and antioxidant activities following hea-shock treatment in tomato plants. — Funct. Plant Biol. 33: 177–187, 2006.

    Article  CAS  Google Scholar 

  • Chang, H.C., Tang, Y.C., Hayer-Hartl, M., Hartl, F.U.: SnapShot: molecular chaperones, part I. — Cell 128: 212–e1, 2007.

    Article  PubMed  Google Scholar 

  • Delessert, C., Kazan, K., Wilson, I.W., Van Der Straeten, D., Manners, J., Dennis, E.S.: The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. — Plant J. 43: 745–757, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Hartl, F.U., Bracher, A., Hayer-Hartl, M.: Molecular chaperones in protein folding and proteostasis. — Nature 475: 324–332, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Hu, W.H., Xiao, Y.A., Zeng J.J., Hu, X.H.: Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. — Biol. Plant. 54: 761–765, 2010.

    Article  CAS  Google Scholar 

  • Jakob, U., Gaestel, M., Engel, K., Buchner, J.: Small heat shock proteins are molecular chaperones. — J. biol. Chem. 268: 1517–1520, 1993.

    CAS  PubMed  Google Scholar 

  • Janska, A., Marsik, P., Zelenkova, S., Ovesna, J.: Cold stress and acclimation: what is important for metabolic adjustment? — Plant Biol. 12: 395–405, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Do, C., Kim, M.: Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. — Plant Physiol. 153: 185–197, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katiyar-Agarwal, S., Agarwal, M., Grover, A.: Heat tolerant basmati rice engineered by over-expression of hsp101. — Plant mol. Biol. 51: 677–686, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J.H., Woo, H.R., Kim, J., Lim, P.O., Lee, I.C., Choi, S.H.: Trifurcate feed-forward regulation of age dependent cell death involving miR164 in Arabidopsis. — Science 323: 1053–1057, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kong, F.Y., Deng, Y.S., Z, B., Wang, G.D., Wang, Y., Meng, Q.W.: A chloroplast-targeted DnaJ protein contributes to maintenance of photosystem II under chilling stress. — J. exp. Bot. 65: 143–158, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li, Z.J., Zhang, L.L., Wang, A.X., Xu, X.Y., Li, J.F.: Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. — PloS one 8: e54880, 2013.

  • Liming, Y., Qian, Y., Pigang, L., Sen, L.: Expression of the HSP24 gene from Trichoderma harzianum in Saccharomyces cerevisiae. — J. Therm. Biol. 33: 1–6, 2008.

    Article  Google Scholar 

  • Lindquist, S., Craig, E.A.: The heat-shock proteins. — Annu. Rev. Genet. 22: 631–677, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X.Z., Huang, B.R.: Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. — Crop Sci. 40: 503–510, 2000.

    Article  CAS  Google Scholar 

  • Lu, P.L., Chen, N.Z., An, R., Su, Z., Qi, B.S., Ren, F., Chen, J., Wang, X.C.: A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. — Plant mol. Biol. 63: 289–305, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Ma, N.N., Zuo, Y.Q., Liang, X.Q., Yin, B., Wang, G.D., Meng, Q.W.: The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. — Physiol. Plant. 149: 474–486, 2013.

    Article  CAS  Google Scholar 

  • Morrow, G., Tanguay, R.M.: Small heat shock protein expression and functions during development. — Int. J. Biochem. Cell Biol. 44: 1613–1621, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Nakashima, K., Ito, Y., Yamaguchi-Shinozaki, K.: Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. — Plant Physiol. 149: 88–95, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puranik, S., Bahadur, R.P., Srivastava, P.S., Prasad, M.: Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P.Beauv]. — Mol. Biotechnol. 49: 138–150, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Rizhsky, L., Liang, H.J., Shuman, J., Shulaev, V., Davletova, S., Mittler, R.: When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. — Plant Physiol. 134: 1683–1696, 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez, M., Canales, E., Borrás-Hidalgo, O.: Molecular aspects of abiotic stress in plants. — Biotecnol. apl. 22: 1–10, 2005.

    Google Scholar 

  • Souer, E., Houwelingen, A., Kloos, D., Mol, J., Koes, R.: The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. — Cell 85: 159–170, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Swindell, W.R., Huebner, M., Weber, A.P.: Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. — BMC Genom. 8: 125, 2007.

    Article  Google Scholar 

  • Valliyodan, B., Nguyen, H.T.: Understanding regulatory networks and engineering for enhanced drought tolerance in plants. — Curr. Opin. Plant Biol. 9: 189–195, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Van Kooten, O., Snel, J.F.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  PubMed  Google Scholar 

  • Vierling, E: The roles of heat shock proteins in plants. — Annu. Rev. Plant Biol. 42: 579–620, 1991.

    Article  CAS  Google Scholar 

  • Wang, J.Z., Cui, L.J., Wang, Y., Li, J.L.: Growth, lipid peroxidation and photosynthesis in two tall fescue cultivars differing in heat tolerance. — Biol. Plant. 53: 237–242, 2009.

    Article  CAS  Google Scholar 

  • Wang, W., Vinocur, B., Shoseyov, O., Altman, A.: Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. — Trends Plant Sci. 9: 244–252, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Waters, E.R., Lee, G.J., Vierling, E.: Evolution, structure and function of the small heat shock proteins in plants. — J. exp. Bot. 47: 325–338, 1996.

    Article  CAS  Google Scholar 

  • Wu, Y., Deng, Z., Lai, J., Zhang, Y., Yang, C., Yin, B., Zhao, Q., Zhang, L., Li, Y., Xie, Q.: Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. — Cell. Res. 19: 1279–1290, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. -W. Meng.

Additional information

Acknowledgements: This research was supported by the State Key Basic Research and Development Plan of China (2009CB118505) and the Natural Science Foundation of China (31171474, 31371553). The first two authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X.Q., Ma, N.N., Wang, G.D. et al. Suppression of SlNAC1 reduces heat resistance in tomato plants. Biol Plant 59, 92–98 (2015). https://doi.org/10.1007/s10535-014-0477-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-014-0477-7

Additional key words

Navigation